ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.07028
  4. Cited By
High-Dimensional Bayesian Optimization via Additive Models with
  Overlapping Groups
v1v2 (latest)

High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups

20 February 2018
Paul Rolland
Jonathan Scarlett
Ilija Bogunovic
Volkan Cevher
ArXiv (abs)PDFHTML

Papers citing "High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups"

18 / 68 papers shown
Title
Additive Tree-Structured Covariance Function for Conditional Parameter
  Spaces in Bayesian Optimization
Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization
Xingchen Ma
Matthew B. Blaschko
75
7
0
21 Jun 2020
Learning to Guide Random Search
Learning to Guide Random Search
Ozan Sener
V. Koltun
ODL
69
21
0
25 Apr 2020
Corruption-Tolerant Gaussian Process Bandit Optimization
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
114
53
0
04 Mar 2020
Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
  Data to Hyper-Parameters
Automatic Hyper-Parameter Optimization Based on Mapping Discovery from Data to Hyper-Parameters
Bozhou Chen
Kaixin Zhang
Longshen Ou
Chenmin Ba
Hongzhi Wang
Chunnan Wang
67
2
0
03 Mar 2020
Scalable Constrained Bayesian Optimization
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
95
102
0
20 Feb 2020
Re-Examining Linear Embeddings for High-Dimensional Bayesian
  Optimization
Re-Examining Linear Embeddings for High-Dimensional Bayesian Optimization
Benjamin Letham
Roberto Calandra
Akshara Rai
E. Bakshy
122
116
0
31 Jan 2020
Trading Convergence Rate with Computational Budget in High Dimensional
  Bayesian Optimization
Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
65
14
0
27 Nov 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
106
474
0
03 Oct 2019
Bayesian Optimization under Heavy-tailed Payoffs
Bayesian Optimization under Heavy-tailed Payoffs
Sayak Ray Chowdhury
Aditya Gopalan
65
27
0
16 Sep 2019
High Dimensional Bayesian Optimization via Supervised Dimension
  Reduction
High Dimensional Bayesian Optimization via Supervised Dimension Reduction
Miao Zhang
Huiqi Li
Steven W. Su
56
44
0
21 Jul 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
90
51
0
02 Jul 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust
  Bayesian Optimisation with Dragonfly
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
Willie Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric Xing
95
178
0
15 Mar 2019
High-dimensional Bayesian optimization using low-dimensional feature
  spaces
High-dimensional Bayesian optimization using low-dimensional feature spaces
Riccardo Moriconi
M. Deisenroth
K. S. S. Kumar
212
11
0
27 Feb 2019
Adaptive and Safe Bayesian Optimization in High Dimensions via
  One-Dimensional Subspaces
Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces
Johannes Kirschner
Mojmír Mutný
N. Hiller
R. Ischebeck
Andreas Krause
106
149
0
08 Feb 2019
Adversarially Robust Optimization with Gaussian Processes
Adversarially Robust Optimization with Gaussian Processes
Ilija Bogunovic
Jonathan Scarlett
Stefanie Jegelka
Volkan Cevher
GPAAML
83
127
0
25 Oct 2018
A survey on policy search algorithms for learning robot controllers in a
  handful of trials
A survey on policy search algorithms for learning robot controllers in a handful of trials
Konstantinos Chatzilygeroudis
Vassilis Vassiliades
F. Stulp
Sylvain Calinon
Jean-Baptiste Mouret
103
155
0
06 Jul 2018
Tight Regret Bounds for Bayesian Optimization in One Dimension
Tight Regret Bounds for Bayesian Optimization in One Dimension
Jonathan Scarlett
189
29
0
30 May 2018
On the choice of the low-dimensional domain for global optimization via
  random embeddings
On the choice of the low-dimensional domain for global optimization via random embeddings
M. Binois
D. Ginsbourger
O. Roustant
100
62
0
18 Apr 2017
Previous
12