Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.07510
Cited By
Spectrally approximating large graphs with smaller graphs
21 February 2018
Andreas Loukas
P. Vandergheynst
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Spectrally approximating large graphs with smaller graphs"
50 / 54 papers shown
Title
Taxonomy of reduction matrices for Graph Coarsening
Antonin Joly
Nicolas Keriven
Aline Roumy
12
0
0
13 Jun 2025
Partition-wise Graph Filtering: A Unified Perspective Through the Lens of Graph Coarsening
Guoming Li
Jian Yang
Yifan Chen
207
0
0
20 May 2025
Graph Condensation: A Survey
Xin Gao
Junliang Yu
Wei Jiang
Tong Chen
Wentao Zhang
Hongzhi Yin
DD
294
21
0
28 Jan 2025
Graph Coarsening via Supervised Granular-Ball for Scalable Graph Neural Network Training
Shuyin Xia
Xinjun Ma
Zhiyuan Liu
Cheng Liu
Sen Zhao
G. Wang
112
2
0
18 Dec 2024
PASCO (PArallel Structured COarsening): an overlay to speed up graph clustering algorithms
Etienne Lasalle
Rémi Vaudaine
Titouan Vayer
Pierre Borgnat
Rémi Gribonval
Paulo Gonçalves
Màrton Karsai
78
0
0
18 Dec 2024
SHyPar: A Spectral Coarsening Approach to Hypergraph Partitioning
Hamed Sajadinia
Ali Aghdaei
Zhuo Feng
73
0
0
09 Oct 2024
Modularity aided consistent attributed graph clustering via coarsening
Samarth Bhatia
Yukti Makhija
Manoj Kumar
Sandeep Kumar
143
0
0
09 Jul 2024
On the Robustness of Graph Reduction Against GNN Backdoor
Yuxuan Zhu
Michael Mandulak
Kerui Wu
George Slota
Yuseok Jeon
Ka-Ho Chow
Lei Yu
AAML
60
1
0
02 Jul 2024
Efficient User Sequence Learning for Online Services via Compressed Graph Neural Networks
Yucheng Wu
Liyue Chen
Yu Cheng
Shuai Chen
Jinyu Xu
Leye Wang
GNN
108
0
0
05 Jun 2024
Graph Coarsening with Message-Passing Guarantees
Antonin Joly
Nicolas Keriven
66
2
0
28 May 2024
Calibrated Dataset Condensation for Faster Hyperparameter Search
Mucong Ding
Yuancheng Xu
Tahseen Rabbani
Xiaoyu Liu
Brian J Gravelle
Teresa M. Ranadive
Tai-Ching Tuan
Furong Huang
DD
72
0
0
27 May 2024
Spectral Greedy Coresets for Graph Neural Networks
Mucong Ding
Yinhan He
Jundong Li
Furong Huang
89
3
0
27 May 2024
Graph Condensation for Open-World Graph Learning
Xin Gao
Tong Chen
Wentao Zhang
Yayong Li
Xiangguo Sun
Hongzhi Yin
120
8
0
27 May 2024
Accelerating Transformers with Spectrum-Preserving Token Merging
Hoai-Chau Tran
D. M. Nguyen
Duy M. Nguyen
Trung Thanh Nguyen
Ngan Le
Pengtao Xie
Daniel Sonntag
James Y. Zou
Binh T. Nguyen
Mathias Niepert
106
13
0
25 May 2024
Rethinking and Accelerating Graph Condensation: A Training-Free Approach with Class Partition
Xin Gao
Tong Chen
Wentao Zhang
Junliang Yu
Guanhua Ye
Quoc Viet Hung Nguyen
137
8
0
22 May 2024
Simple Graph Condensation
Zhenbang Xiao
Yu Wang
Shunyu Liu
Huiqiong Wang
Mingli Song
Tongya Zheng
DD
145
8
0
22 Mar 2024
TEDDY: Trimming Edges with Degree-based Discrimination strategY
Hyunjin Seo
Jihun Yun
Eunho Yang
77
1
0
02 Feb 2024
A Comprehensive Survey on Graph Reduction: Sparsification, Coarsening, and Condensation
Mohammad Hashemi
Shengbo Gong
Juntong Ni
Wenqi Fan
B. A. Prakash
Wei Jin
DD
145
51
0
29 Jan 2024
Disentangled Condensation for Large-scale Graphs
Zhenbang Xiao
Shunyu Liu
Yu Wang
Tongya Zheng
Mingli Song
Mingli Song
Tongya Zheng
DD
255
7
0
18 Jan 2024
Efficient and Scalable Graph Generation through Iterative Local Expansion
Andreas Bergmeister
Karolis Martinkus
Nathanael Perraudin
Roger Wattenhofer
83
16
0
14 Dec 2023
Does Graph Distillation See Like Vision Dataset Counterpart?
Beining Yang
Kai Wang
Qingyun Sun
Cheng Ji
Xingcheng Fu
Hao Tang
Yang You
Jianxin Li
DD
71
45
0
13 Oct 2023
Data-centric Graph Learning: A Survey
Jixi Liu
Deyu Bo
Cheng Yang
Haoran Dai
Qi Zhang
Yixin Xiao
Yufei Peng
Chuan Shi
GNN
92
21
0
08 Oct 2023
Adversarial Erasing with Pruned Elements: Towards Better Graph Lottery Ticket
Yuwen Wang
Shunyu Liu
Kai Chen
Tongtian Zhu
Jilin Qiao
Mengjie Shi
Yuanyu Wan
Mingli Song
61
6
0
05 Aug 2023
Graph Condensation for Inductive Node Representation Learning
Xin Gao
Tong Chen
Yilong Zang
Wentao Zhang
Quoc Viet Hung Nguyen
Kai Zheng
Hongzhi Yin
DD
AI4CE
105
38
0
29 Jul 2023
A Survey on Graph Neural Network Acceleration: Algorithms, Systems, and Customized Hardware
Shichang Zhang
Atefeh Sohrabizadeh
Cheng Wan
Zijie Huang
Ziniu Hu
Yewen Wang
Yingyan Lin
Lin
Jason Cong
Yizhou Sun
GNN
AI4CE
96
25
0
24 Jun 2023
A Gromov--Wasserstein Geometric View of Spectrum-Preserving Graph Coarsening
Yifan Chen
Rentian Yao
Yun Yang
Jie Chen
86
8
0
15 Jun 2023
Graph Filters for Signal Processing and Machine Learning on Graphs
Elvin Isufi
Fernando Gama
D. Shuman
Santiago Segarra
GNN
88
72
0
16 Nov 2022
HyperEF: Spectral Hypergraph Coarsening by Effective-Resistance Clustering
Ali Aghdaei
Zhuo Feng
47
9
0
26 Oct 2022
A Unified Framework for Optimization-Based Graph Coarsening
Manoj Kumar
Anurag Sharma
Surinder Kumar
44
16
0
02 Oct 2022
Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural Networks
Chuang Liu
Xueqi Ma
Yinbing Zhan
Liang Ding
Dapeng Tao
Di Lin
Wenbin Hu
Danilo Mandic
72
32
0
18 Jul 2022
FunQG: Molecular Representation Learning Via Quotient Graphs
H. Hajiabolhassan
Zahra Taheri
Ali Hojatnia
Yavar Taheri Yeganeh
29
8
0
18 Jul 2022
SMGRL: Scalable Multi-resolution Graph Representation Learning
Reza Namazi
Elahe Ghalebi
Sinead Williamson
H. Mahyar
70
1
0
29 Jan 2022
SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning
Mattia Atzeni
Jasmina Bogojeska
Andreas Loukas
ReLM
LRM
73
15
0
27 Oct 2021
Graph Condensation for Graph Neural Networks
Wei Jin
Lingxiao Zhao
Shichang Zhang
Yozen Liu
Jiliang Tang
Neil Shah
DD
AI4CE
148
162
0
14 Oct 2021
HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering
Ali Aghdaei
Zhiqiang Zhao
Zhuo Feng
36
8
0
17 Aug 2021
Partition and Code: learning how to compress graphs
Giorgos Bouritsas
Andreas Loukas
Nikolaos Karalias
M. Bronstein
77
13
0
05 Jul 2021
Interferometric Graph Transform for Community Labeling
Nathan Grinsztajn
Louis Leconte
Philippe Preux
Edouard Oyallon
46
1
0
04 Jun 2021
Low-Rank Projections of GCNs Laplacian
Nathan Grinsztajn
Philippe Preux
Edouard Oyallon
21
1
0
04 Jun 2021
Graph Coarsening with Neural Networks
Chen Cai
Dingkang Wang
Yusu Wang
DD
182
68
0
02 Feb 2021
Chordal Decomposition for Spectral Coarsening
Honglin Chen
Hsueh-Ti Derek Liu
Alec Jacobson
David I. W. Levin
42
12
0
04 Sep 2020
SF-GRASS: Solver-Free Graph Spectral Sparsification
Ying Zhang
Zhiqiang Zhao
Zhuo Feng
38
12
0
17 Aug 2020
Faster Graph Embeddings via Coarsening
Matthew Fahrbach
Gramoz Goranci
Richard Peng
Sushant Sachdeva
Chi Wang
65
28
0
06 Jul 2020
Gaussian Processes on Graphs via Spectral Kernel Learning
Yin-Cong Zhi
Yin Cheng Ng
Xiaowen Dong
53
32
0
12 Jun 2020
COPT: Coordinated Optimal Transport for Graph Sketching
Yihe Dong
W. Sawin
OT
104
26
0
09 Mar 2020
Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal Transport
Tengfei Ma
Jie Chen
71
25
0
24 Dec 2019
GRASPEL: Graph Spectral Learning at Scale
Yongyu Wang
Zhiqiang Zhao
Zhuo Feng
396
4
0
23 Nov 2019
Human Action Recognition with Multi-Laplacian Graph Convolutional Networks
A. Mazari
H. Sahbi
GNN
41
5
0
15 Oct 2019
Structured Graph Learning Via Laplacian Spectral Constraints
Sandeep Kumar
Jiaxi Ying
J. Cardoso
Daniel P. Palomar
115
58
0
24 Sep 2019
A graphical heuristic for reduction and partitioning of large datasets for scalable supervised training
Sumedh Yadav
Mathis Bode
36
3
0
24 Jul 2019
Solving graph compression via optimal transport
Vikas Garg
Tommi Jaakkola
OT
67
16
0
29 May 2019
1
2
Next