Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.07814
Cited By
Learning to Explain: An Information-Theoretic Perspective on Model Interpretation
21 February 2018
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
MLT
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Explain: An Information-Theoretic Perspective on Model Interpretation"
50 / 52 papers shown
Title
Axiomatic Explainer Globalness via Optimal Transport
Davin Hill
Josh Bone
A. Masoomi
Max Torop
Jennifer Dy
93
1
0
13 Mar 2025
A Neural Difference-of-Entropies Estimator for Mutual Information
Haoran Ni
Martin Lotz
SSL
DRL
87
0
0
18 Feb 2025
Building Bridges, Not Walls -- Advancing Interpretability by Unifying Feature, Data, and Model Component Attribution
Shichang Zhang
Tessa Han
Usha Bhalla
Hima Lakkaraju
FAtt
145
0
0
17 Feb 2025
Comprehensive Attribution: Inherently Explainable Vision Model with Feature Detector
Xianren Zhang
Dongwon Lee
Suhang Wang
VLM
FAtt
37
3
0
27 Jul 2024
Feature Inference Attack on Shapley Values
Xinjian Luo
Yangfan Jiang
X. Xiao
AAML
FAtt
19
19
0
16 Jul 2024
Restyling Unsupervised Concept Based Interpretable Networks with Generative Models
Jayneel Parekh
Quentin Bouniot
Pavlo Mozharovskyi
A. Newson
Florence dÁlché-Buc
SSL
53
1
0
01 Jul 2024
Efficient and Accurate Explanation Estimation with Distribution Compression
Hubert Baniecki
Giuseppe Casalicchio
Bernd Bischl
Przemyslaw Biecek
FAtt
36
3
0
26 Jun 2024
Partial Information Decomposition for Data Interpretability and Feature Selection
Charles Westphal
Stephen Hailes
Mirco Musolesi
32
0
0
29 May 2024
Like Humans to Few-Shot Learning through Knowledge Permeation of Vision and Text
Yuyu Jia
Qing Zhou
Wei Huang
Junyu Gao
Qi. Wang
VLM
22
1
0
21 May 2024
Multiple Different Black Box Explanations for Image Classifiers
Hana Chockler
D. A. Kelly
Daniel Kroening
FAtt
11
0
0
25 Sep 2023
FunnyBirds: A Synthetic Vision Dataset for a Part-Based Analysis of Explainable AI Methods
Robin Hesse
Simone Schaub-Meyer
Stefan Roth
AAML
27
32
0
11 Aug 2023
Discriminative Feature Attributions: Bridging Post Hoc Explainability and Inherent Interpretability
Usha Bhalla
Suraj Srinivas
Himabindu Lakkaraju
FAtt
CML
13
6
0
27 Jul 2023
Efficient Learning of Discrete-Continuous Computation Graphs
David Friede
Mathias Niepert
8
3
0
26 Jul 2023
BELLA: Black box model Explanations by Local Linear Approximations
N. Radulovic
Albert Bifet
Fabian M. Suchanek
FAtt
22
1
0
18 May 2023
Lidar Line Selection with Spatially-Aware Shapley Value for Cost-Efficient Depth Completion
Kamil Adamczewski
Christos Sakaridis
Vaishakh Patil
Luc Van Gool
23
1
0
21 Mar 2023
Don't be fooled: label leakage in explanation methods and the importance of their quantitative evaluation
N. Jethani
A. Saporta
Rajesh Ranganath
FAtt
29
10
0
24 Feb 2023
Tell Model Where to Attend: Improving Interpretability of Aspect-Based Sentiment Classification via Small Explanation Annotations
Zhenxiao Cheng
Jie Zhou
Wen Wu
Qin Chen
Liang He
16
3
0
21 Feb 2023
TAX: Tendency-and-Assignment Explainer for Semantic Segmentation with Multi-Annotators
Yuan-Chia Cheng
Zu-Yun Shiau
Fu-En Yang
Yu-Chiang Frank Wang
31
2
0
19 Feb 2023
Personalized Interpretable Classification
Zengyou He
Yifan Tang
Yifan Tang
Lianyu Hu
Yan Liu
Yan Liu
15
0
0
06 Feb 2023
The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations
Angelos Chatzimparmpas
R. Martins
I. Jusufi
K. Kucher
Fabrice Rossi
A. Kerren
FAtt
15
160
0
22 Dec 2022
On the Explainability of Natural Language Processing Deep Models
Julia El Zini
M. Awad
25
81
0
13 Oct 2022
Sequential Attention for Feature Selection
T. Yasuda
M. Bateni
Lin Chen
Matthew Fahrbach
Gang Fu
Vahab Mirrokni
15
11
0
29 Sep 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
26
7
0
28 Sep 2022
A novel evaluation methodology for supervised Feature Ranking algorithms
Jeroen G. S. Overschie
11
0
0
09 Jul 2022
Learning to Increase the Power of Conditional Randomization Tests
Shalev Shaer
Yaniv Romano
CML
8
2
0
03 Jul 2022
Explanation-based Counterfactual Retraining(XCR): A Calibration Method for Black-box Models
Liu Zhendong
Wenyu Jiang
Yan Zhang
Chongjun Wang
CML
6
0
0
22 Jun 2022
Let Invariant Rationale Discovery Inspire Graph Contrastive Learning
Sihang Li
Xiang Wang
An Zhang
Y. Wu
Xiangnan He
Tat-Seng Chua
11
93
0
16 Jun 2022
A Functional Information Perspective on Model Interpretation
Itai Gat
Nitay Calderon
Roi Reichart
Tamir Hazan
AAML
FAtt
28
6
0
12 Jun 2022
OmniXAI: A Library for Explainable AI
Wenzhuo Yang
Hung Le
Tanmay Laud
Silvio Savarese
S. Hoi
SyDa
8
38
0
01 Jun 2022
Trustworthy Graph Neural Networks: Aspects, Methods and Trends
He Zhang
Bang Wu
Xingliang Yuan
Shirui Pan
Hanghang Tong
Jian Pei
41
98
0
16 May 2022
Causality Inspired Representation Learning for Domain Generalization
Fangrui Lv
Jian Liang
Shuang Li
Bin Zang
Chi Harold Liu
Ziteng Wang
Di Liu
CML
OOD
20
158
0
27 Mar 2022
SOInter: A Novel Deep Energy Based Interpretation Method for Explaining Structured Output Models
S. F. Seyyedsalehi
Mahdieh Soleymani
Hamid R. Rabiee
15
0
0
20 Feb 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
172
183
0
03 Feb 2022
Making a (Counterfactual) Difference One Rationale at a Time
Michael J. Plyler
Michal Green
Min Chi
16
10
0
13 Jan 2022
Efficient Decompositional Rule Extraction for Deep Neural Networks
Mateo Espinosa Zarlenga
Z. Shams
M. Jamnik
14
16
0
24 Nov 2021
Understanding Interlocking Dynamics of Cooperative Rationalization
Mo Yu
Yang Zhang
Shiyu Chang
Tommi Jaakkola
14
41
0
26 Oct 2021
Counterfactual Explanations for Neural Recommenders
Khanh Tran
Azin Ghazimatin
Rishiraj Saha Roy
AAML
CML
44
65
0
11 May 2021
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Darius Afchar
Romain Hennequin
Vincent Guigue
FAtt
24
20
0
26 Apr 2021
Explanations for Occluded Images
Hana Chockler
Daniel Kroening
Youcheng Sun
13
21
0
05 Mar 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
76
70
0
02 Mar 2021
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
22
239
0
21 Nov 2020
Learning Propagation Rules for Attribution Map Generation
Yiding Yang
Jiayan Qiu
Mingli Song
Dacheng Tao
Xinchao Wang
FAtt
16
17
0
14 Oct 2020
When is invariance useful in an Out-of-Distribution Generalization problem ?
Masanori Koyama
Shoichiro Yamaguchi
OOD
20
64
0
04 Aug 2020
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
19
85
0
15 Jun 2020
Importance-Driven Deep Learning System Testing
Simos Gerasimou
Hasan Ferit Eniser
A. Sen
Alper Çakan
AAML
VLM
19
97
0
09 Feb 2020
GraphLIME: Local Interpretable Model Explanations for Graph Neural Networks
Q. Huang
M. Yamada
Yuan Tian
Dinesh Singh
Dawei Yin
Yi-Ju Chang
FAtt
26
343
0
17 Jan 2020
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
Patrick Schwab
W. Karlen
FAtt
CML
29
203
0
27 Oct 2019
Can I Trust the Explainer? Verifying Post-hoc Explanatory Methods
Oana-Maria Camburu
Eleonora Giunchiglia
Jakob N. Foerster
Thomas Lukasiewicz
Phil Blunsom
FAtt
AAML
11
59
0
04 Oct 2019
Explaining and Interpreting LSTMs
L. Arras
Jose A. Arjona-Medina
Michael Widrich
G. Montavon
Michael Gillhofer
K. Müller
Sepp Hochreiter
Wojciech Samek
FAtt
AI4TS
10
78
0
25 Sep 2019
Multimodal Explanations by Predicting Counterfactuality in Videos
Atsushi Kanehira
Kentaro Takemoto
S. Inayoshi
Tatsuya Harada
18
35
0
04 Dec 2018
1
2
Next