Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.08232
Cited By
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
22 February 2018
Nicholas Carlini
Chang-rui Liu
Ulfar Erlingsson
Jernej Kos
D. Song
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks"
50 / 710 papers shown
Title
Auditing Differentially Private Machine Learning: How Private is Private SGD?
Matthew Jagielski
Jonathan R. Ullman
Alina Oprea
FedML
10
237
0
13 Jun 2020
Report from the NSF Future Directions Workshop, Toward User-Oriented Agents: Research Directions and Challenges
M. Eskénazi
Tiancheng Zhao
LLMAG
AI4TS
AI4CE
36
9
0
10 Jun 2020
Trade-offs between membership privacy & adversarially robust learning
Jamie Hayes
SILM
20
3
0
08 Jun 2020
On the Difficulty of Membership Inference Attacks
Shahbaz Rezaei
Xin Liu
MIACV
6
13
0
27 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
62
25
0
27 Apr 2020
Have you forgotten? A method to assess if machine learning models have forgotten data
Xiao Liu
Sotirios A. Tsaftaris
FedML
OOD
MU
11
26
0
21 Apr 2020
Information Leakage in Embedding Models
Congzheng Song
A. Raghunathan
MIACV
16
260
0
31 Mar 2020
Learn to Forget: Machine Unlearning via Neuron Masking
Yang Liu
Zhuo Ma
Ximeng Liu
Jian-wei Liu
Zhongyuan Jiang
Jianfeng Ma
Philip Yu
K. Ren
MU
15
61
0
24 Mar 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
196
358
0
24 Mar 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,705
0
18 Mar 2020
Cryptanalytic Extraction of Neural Network Models
Nicholas Carlini
Matthew Jagielski
Ilya Mironov
FedML
MLAU
MIACV
AAML
70
134
0
10 Mar 2020
Towards Probabilistic Verification of Machine Unlearning
David M. Sommer
Liwei Song
Sameer Wagh
Prateek Mittal
AAML
11
71
0
09 Mar 2020
Federating Recommendations Using Differentially Private Prototypes
Mónica Ribero
Jette Henderson
Sinead Williamson
H. Vikalo
FedML
12
39
0
01 Mar 2020
On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping
Sanghyun Hong
Varun Chandrasekaran
Yigitcan Kaya
Tudor Dumitras
Nicolas Papernot
AAML
12
136
0
26 Feb 2020
Approximate Data Deletion from Machine Learning Models
Zachary Izzo
Mary Anne Smart
Kamalika Chaudhuri
James Y. Zou
MU
9
248
0
24 Feb 2020
Differentially Private Set Union
Sivakanth Gopi
P. Gulhane
Janardhan Kulkarni
J. Shen
Milad Shokouhi
Sergey Yekhanin
FedML
11
32
0
22 Feb 2020
Data Heterogeneity Differential Privacy: From Theory to Algorithm
Yilin Kang
Jian Li
Yong Liu
Weiping Wang
23
1
0
20 Feb 2020
Machine Unlearning: Linear Filtration for Logit-based Classifiers
Thomas Baumhauer
Pascal Schöttle
Matthias Zeppelzauer
MU
104
130
0
07 Feb 2020
CryptoSPN: Privacy-preserving Sum-Product Network Inference
Amos Treiber
Alejandro Molina
Christian Weinert
T. Schneider
Kristian Kersting
11
10
0
03 Feb 2020
Model Extraction Attacks against Recurrent Neural Networks
Tatsuya Takemura
Naoto Yanai
T. Fujiwara
MLAU
MIACV
AAML
15
15
0
01 Feb 2020
Analyzing Information Leakage of Updates to Natural Language Models
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
Victor Rühle
Andrew J. Paverd
O. Ohrimenko
Boris Köpf
Marc Brockschmidt
ELM
MIACV
FedML
PILM
KELM
6
125
0
17 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
69
6,063
0
10 Dec 2019
Machine Unlearning
Lucas Bourtoule
Varun Chandrasekaran
Christopher A. Choquette-Choo
Hengrui Jia
Adelin Travers
Baiwu Zhang
David Lie
Nicolas Papernot
MU
14
806
0
09 Dec 2019
Security of Deep Learning Methodologies: Challenges and Opportunities
Shahbaz Rezaei
Xin Liu
AAML
26
4
0
08 Dec 2019
Differentially Private Synthetic Mixed-Type Data Generation For Unsupervised Learning
U. Tantipongpipat
Chris Waites
Digvijay Boob
Amaresh Ankit Siva
Rachel Cummings
SyDa
16
31
0
06 Dec 2019
PAC learning with stable and private predictions
Y. Dagan
Vitaly Feldman
12
12
0
24 Nov 2019
Robust Anomaly Detection and Backdoor Attack Detection Via Differential Privacy
Min Du
R. Jia
D. Song
AAML
11
175
0
16 Nov 2019
Revocable Federated Learning: A Benchmark of Federated Forest
Yang Liu
Zhuo Ma
Ximeng Liu
Zhuzhu Wang
Siqi Ma
Ken Ren
FedML
MU
16
10
0
08 Nov 2019
Enhancing the Privacy of Federated Learning with Sketching
Zaoxing Liu
Tian Li
Virginia Smith
Vyas Sekar
FedML
11
20
0
05 Nov 2019
Fault Tolerance of Neural Networks in Adversarial Settings
Vasisht Duddu
N. Pillai
D. V. Rao
V. Balas
SILM
AAML
11
11
0
30 Oct 2019
Efficient Privacy-Preserving Stochastic Nonconvex Optimization
Lingxiao Wang
Bargav Jayaraman
David E. Evans
Quanquan Gu
11
28
0
30 Oct 2019
Privacy Enhanced Multimodal Neural Representations for Emotion Recognition
Mimansa Jaiswal
E. Provost
25
72
0
29 Oct 2019
Thieves on Sesame Street! Model Extraction of BERT-based APIs
Kalpesh Krishna
Gaurav Singh Tomar
Ankur P. Parikh
Nicolas Papernot
Mohit Iyyer
MIACV
MLAU
25
193
0
27 Oct 2019
Weighted Distributed Differential Privacy ERM: Convex and Non-convex
Yilin Kang
Yong Liu
Weiping Wang
13
10
0
23 Oct 2019
Actor Critic with Differentially Private Critic
Jonathan Lebensold
William L. Hamilton
Borja Balle
Doina Precup
OffRL
15
9
0
14 Oct 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
40
965
0
04 Oct 2019
Alleviating Privacy Attacks via Causal Learning
Shruti Tople
Amit Sharma
A. Nori
MIACV
OOD
19
32
0
27 Sep 2019
Privacy Accounting and Quality Control in the Sage Differentially Private ML Platform
Mathias Lécuyer
Riley Spahn
Kiran Vodrahalli
Roxana Geambasu
Daniel J. Hsu
9
44
0
04 Sep 2019
Cloudy with high chance of DBMS: A 10-year prediction for Enterprise-Grade ML
Ashvin Agrawal
Rony Chatterjee
Carlo Curino
Avrilia Floratou
Neha Godwal
...
Karla Saur
Rathijit Sen
Markus Weimer
Travis Wright
Yiwen Zhu
15
39
0
30 Aug 2019
White-box vs Black-box: Bayes Optimal Strategies for Membership Inference
Alexandre Sablayrolles
Matthijs Douze
Yann Ollivier
Cordelia Schmid
Hervé Jégou
MIACV
9
351
0
29 Aug 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
13
4,413
0
21 Aug 2019
Federated Learning for Wireless Communications: Motivation, Opportunities and Challenges
Solmaz Niknam
Harpreet S. Dhillon
J. H. Reed
17
597
0
30 Jul 2019
The Cost of a Reductions Approach to Private Fair Optimization
Daniel Alabi
28
3
0
23 Jun 2019
Membership Privacy for Machine Learning Models Through Knowledge Transfer
Virat Shejwalkar
Amir Houmansadr
14
10
0
15 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
21
481
0
12 Jun 2019
ARCHANGEL: Tamper-proofing Video Archives using Temporal Content Hashes on the Blockchain
Tu Bui
Daniel Cooper
John Collomosse
Mark Bell
Alex Green
...
Jez Higgins
Arindra Das
Jared Keller
Olivier Thereaux
Alan W. Brown
4
20
0
26 Apr 2019
How You Act Tells a Lot: Privacy-Leakage Attack on Deep Reinforcement Learning
Xinlei Pan
Weiyao Wang
Xiaoshuai Zhang
Bo-wen Li
Jinfeng Yi
D. Song
MIACV
61
26
0
24 Apr 2019
Federated Learning Of Out-Of-Vocabulary Words
Mingqing Chen
Rajiv Mathews
Tom Y. Ouyang
F. Beaufays
FedML
17
162
0
26 Mar 2019
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
141
420
0
29 Nov 2018
Déjà Vu: an empirical evaluation of the memorization properties of ConvNets
Alexandre Sablayrolles
Matthijs Douze
Cordelia Schmid
Hervé Jégou
11
18
0
17 Sep 2018
Previous
1
2
3
...
13
14
15
Next