Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1802.08232
Cited By
v1
v2
v3 (latest)
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
22 February 2018
Nicholas Carlini
Chang-rui Liu
Ulfar Erlingsson
Jernej Kos
Basel Alomair
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks"
50 / 790 papers shown
Title
On the Practicality of Differential Privacy in Federated Learning by Tuning Iteration Times
Yao Fu
Yipeng Zhou
Di Wu
Shui Yu
Yonggang Wen
Chao Li
FedML
144
12
0
11 Jan 2021
Adversary Instantiation: Lower Bounds for Differentially Private Machine Learning
IEEE Symposium on Security and Privacy (IEEE S&P), 2021
Milad Nasr
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Nicholas Carlini
MIACV
FedML
315
261
0
11 Jan 2021
Investigating Memorization of Conspiracy Theories in Text Generation
Findings (Findings), 2021
Sharon Levy
Michael Stephen Saxon
Wenjie Wang
149
21
0
02 Jan 2021
KART: Parameterization of Privacy Leakage Scenarios from Pre-trained Language Models
Yuta Nakamura
S. Hanaoka
Y. Nomura
Naoto Hayashi
O. Abe
Shuntaro Yada
Shoko Wakamiya
Nara Institute of Science
MIACV
268
8
0
31 Dec 2020
Extracting Training Data from Large Language Models
USENIX Security Symposium (USENIX Security), 2020
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
Basel Alomair
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
1.1K
2,422
0
14 Dec 2020
When is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning?
Symposium on the Theory of Computing (STOC), 2020
Gavin Brown
Mark Bun
Vitaly Feldman
Adam D. Smith
Kunal Talwar
535
115
0
11 Dec 2020
Modifying Memories in Transformer Models
Chen Zhu
A. S. Rawat
Manzil Zaheer
Srinadh Bhojanapalli
Daliang Li
Felix X. Yu
Sanjiv Kumar
KELM
281
242
0
01 Dec 2020
Revolutionizing Medical Data Sharing Using Advanced Privacy Enhancing Technologies: Technical, Legal and Ethical Synthesis
Journal of Medical Internet Research (JMIR), 2020
J. Scheibner
J. Raisaro
J. Troncoso-Pastoriza
M. Ienca
J. Fellay
E. Vayena
Jean-Pierre Hubaux
86
92
0
27 Oct 2020
FaceLeaks: Inference Attacks against Transfer Learning Models via Black-box Queries
Seng Pei Liew
Tsubasa Takahashi
MIACV
FedML
157
10
0
27 Oct 2020
Exploring the Security Boundary of Data Reconstruction via Neuron Exclusivity Analysis
USENIX Security Symposium (USENIX Security), 2020
Xudong Pan
Mi Zhang
Yifan Yan
Jiaming Zhu
Zhemin Yang
AAML
183
24
0
26 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
663
806
0
19 Oct 2020
Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization
Neural Information Processing Systems (NeurIPS), 2020
P. Subramani
Nicholas Vadivelu
Gautam Kamath
301
86
0
18 Oct 2020
GECKO: Reconciling Privacy, Accuracy and Efficiency in Embedded Deep Learning
ACM Symposium on Applied Computing (SAC), 2020
Vasisht Duddu
A. Boutet
Virat Shejwalkar
GNN
169
4
0
02 Oct 2020
Quantifying Privacy Leakage in Graph Embedding
International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous), 2020
Vasisht Duddu
A. Boutet
Virat Shejwalkar
MIACV
187
145
0
02 Oct 2020
Oblivious Sampling Algorithms for Private Data Analysis
Sajin Sasy
O. Ohrimenko
FedML
148
19
0
28 Sep 2020
STAN: Synthetic Network Traffic Generation with Generative Neural Models
Shengzhe Xu
Manish Marwah
M. Arlitt
Naren Ramakrishnan
DiffM
AI4TS
102
37
0
27 Sep 2020
RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models
Findings (Findings), 2020
Samuel Gehman
Suchin Gururangan
Maarten Sap
Yejin Choi
Noah A. Smith
655
1,440
0
24 Sep 2020
FastSecAgg: Scalable Secure Aggregation for Privacy-Preserving Federated Learning
S. Kadhe
Nived Rajaraman
O. O. Koyluoglu
Kannan Ramchandran
FedML
224
187
0
23 Sep 2020
Federated Learning for Computational Pathology on Gigapixel Whole Slide Images
Ming Y. Lu
Dehan Kong
Jana Lipkova
Richard J. Chen
Rajendra Singh
Drew F. K. Williamson
Tiffany Y. Chen
Faisal Mahmood
FedML
MedIm
243
207
0
21 Sep 2020
Adversarial Watermarking Transformer: Towards Tracing Text Provenance with Data Hiding
IEEE Symposium on Security and Privacy (IEEE S&P), 2020
Sahar Abdelnabi
Mario Fritz
WaLM
284
182
0
07 Sep 2020
GRAFFL: Gradient-free Federated Learning of a Bayesian Generative Model
S. Hahn
Junghye Lee
FedML
113
2
0
29 Aug 2020
FedSKETCH: Communication-Efficient and Private Federated Learning via Sketching
Farzin Haddadpour
Belhal Karimi
Ping Li
Xiaoyun Li
FedML
132
35
0
11 Aug 2020
Privacy-preserving Voice Analysis via Disentangled Representations
Ranya Aloufi
Hamed Haddadi
David E. Boyle
DRL
272
62
0
29 Jul 2020
Label-Only Membership Inference Attacks
International Conference on Machine Learning (ICML), 2020
Christopher A. Choquette-Choo
Florian Tramèr
Nicholas Carlini
Nicolas Papernot
MIACV
MIALM
502
589
0
28 Jul 2020
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
AAAI Conference on Artificial Intelligence (AAAI), 2020
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
333
194
0
28 Jul 2020
ML Privacy Meter: Aiding Regulatory Compliance by Quantifying the Privacy Risks of Machine Learning
S. K. Murakonda
Reza Shokri
147
96
0
18 Jul 2020
A Survey of Privacy Attacks in Machine Learning
ACM Computing Surveys (ACM CSUR), 2020
M. Rigaki
Sebastian Garcia
PILM
AAML
263
280
0
15 Jul 2020
The Trade-Offs of Private Prediction
Laurens van der Maaten
Awni Y. Hannun
161
27
0
09 Jul 2020
Green Lighting ML: Confidentiality, Integrity, and Availability of Machine Learning Systems in Deployment
Abhishek Gupta
Erick Galinkin
64
4
0
09 Jul 2020
Private Speech Classification with Secure Multiparty Computation
Kyle Bittner
Martine De Cock
Rafael Dowsley
202
1
0
01 Jul 2020
Measuring Memorization Effect in Word-Level Neural Networks Probing
Rudolf Rosa
Tomáš Musil
David Marevcek
171
4
0
29 Jun 2020
Best-Effort Adversarial Approximation of Black-Box Malware Classifiers
A. Ali
Birhanu Eshete
AAML
115
7
0
28 Jun 2020
Free-rider Attacks on Model Aggregation in Federated Learning
Yann Fraboni
Richard Vidal
Marco Lorenzi
FedML
291
153
0
21 Jun 2020
Flexible Dataset Distillation: Learn Labels Instead of Images
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
DD
261
119
0
15 Jun 2020
Auditing Differentially Private Machine Learning: How Private is Private SGD?
Neural Information Processing Systems (NeurIPS), 2020
Matthew Jagielski
Jonathan R. Ullman
Alina Oprea
FedML
129
294
0
13 Jun 2020
Report from the NSF Future Directions Workshop, Toward User-Oriented Agents: Research Directions and Challenges
M. Eskénazi
Tiancheng Zhao
LLMAG
AI4TS
AI4CE
190
9
0
10 Jun 2020
Trade-offs between membership privacy & adversarially robust learning
Jamie Hayes
SILM
172
3
0
08 Jun 2020
On the Difficulty of Membership Inference Attacks
Shahbaz Rezaei
Xin Liu
MIACV
151
15
0
27 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
ACM Transactions on Knowledge Discovery from Data (TKDD), 2020
Xinjian Luo
Xiangqi Zhu
FedML
610
29
0
27 Apr 2020
Have you forgotten? A method to assess if machine learning models have forgotten data
Xiao Liu
Sotirios A. Tsaftaris
FedML
OOD
MU
104
27
0
21 Apr 2020
Information Leakage in Embedding Models
Conference on Computer and Communications Security (CCS), 2020
Congzheng Song
A. Raghunathan
MIACV
373
317
0
31 Mar 2020
Learn to Forget: Machine Unlearning via Neuron Masking
IEEE Transactions on Dependable and Secure Computing (TDSC), 2020
Yang Liu
Zhuo Ma
Ximeng Liu
Jian Liu
Zhongyuan Jiang
Jianfeng Ma
Philip Yu
K. Ren
MU
175
80
0
24 Mar 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
USENIX Security Symposium (USENIX Security), 2020
Liwei Song
Prateek Mittal
MIACV
611
445
0
24 Mar 2020
The Future of Digital Health with Federated Learning
npj Digital Medicine (NPJ Digit Med), 2020
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
415
2,226
0
18 Mar 2020
Cryptanalytic Extraction of Neural Network Models
Annual International Cryptology Conference (CRYPTO), 2020
Nicholas Carlini
Matthew Jagielski
Ilya Mironov
FedML
MLAU
MIACV
AAML
411
151
0
10 Mar 2020
Towards Probabilistic Verification of Machine Unlearning
David M. Sommer
Liwei Song
Sameer Wagh
Prateek Mittal
AAML
334
80
0
09 Mar 2020
Federating Recommendations Using Differentially Private Prototypes
Pattern Recognition (Pattern Recognit.), 2020
Mónica Ribero
Jette Henderson
Sinead Williamson
H. Vikalo
FedML
133
42
0
01 Mar 2020
On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping
Sanghyun Hong
Varun Chandrasekaran
Yigitcan Kaya
Tudor Dumitras
Nicolas Papernot
AAML
167
148
0
26 Feb 2020
Approximate Data Deletion from Machine Learning Models
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Zachary Izzo
Mary Anne Smart
Kamalika Chaudhuri
James Zou
MU
226
310
0
24 Feb 2020
Differentially Private Set Union
International Conference on Machine Learning (ICML), 2020
Sivakanth Gopi
P. Gulhane
Janardhan Kulkarni
J. Shen
Milad Shokouhi
Sergey Yekhanin
FedML
154
34
0
22 Feb 2020
Previous
1
2
3
...
14
15
16
Next