Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.08908
Cited By
Scalable Private Learning with PATE
24 February 2018
Nicolas Papernot
Shuang Song
Ilya Mironov
A. Raghunathan
Kunal Talwar
Ulfar Erlingsson
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Scalable Private Learning with PATE"
50 / 138 papers shown
Title
DPolicy: Managing Privacy Risks Across Multiple Releases with Differential Privacy
Nicolas Küchler
Alexander Viand
Hidde Lycklama
Anwar Hithnawi
26
0
0
10 May 2025
A Comprehensive Survey of Synthetic Tabular Data Generation
Ruxue Shi
Yili Wang
Mengnan Du
Xu Shen
Xin Wang
49
2
0
23 Apr 2025
DP-GPL: Differentially Private Graph Prompt Learning
Jing Xu
Franziska Boenisch
Iyiola Emmanuel Olatunji
Adam Dziedzic
AAML
53
0
0
13 Mar 2025
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
109
0
0
30 Dec 2024
Data-adaptive Differentially Private Prompt Synthesis for In-Context Learning
Fengyu Gao
Ruida Zhou
T. Wang
Cong Shen
Jing Yang
37
2
0
15 Oct 2024
PFGuard: A Generative Framework with Privacy and Fairness Safeguards
Soyeon Kim
Yuji Roh
Geon Heo
Steven Euijong Whang
39
0
0
03 Oct 2024
Learning Privacy-Preserving Student Networks via Discriminative-Generative Distillation
Shiming Ge
Bochao Liu
Pengju Wang
Yong Li
Dan Zeng
FedML
44
9
0
04 Sep 2024
PATE-TripleGAN: Privacy-Preserving Image Synthesis with Gaussian Differential Privacy
Zepeng Jiang
Weiwei Ni
Yifan Zhang
PICV
21
1
0
19 Apr 2024
VFLGAN: Vertical Federated Learning-based Generative Adversarial Network for Vertically Partitioned Data Publication
Xun Yuan
Yang Yang
P. Gope
A. Pasikhani
Biplab Sikdar
42
2
0
15 Apr 2024
Privacy Preserving Prompt Engineering: A Survey
Kennedy Edemacu
Xintao Wu
47
18
0
09 Apr 2024
Public-data Assisted Private Stochastic Optimization: Power and Limitations
Enayat Ullah
Michael Menart
Raef Bassily
Cristóbal Guzmán
Raman Arora
30
1
0
06 Mar 2024
Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance
Wenqi Wei
Ling Liu
31
16
0
02 Feb 2024
Machine unlearning through fine-grained model parameters perturbation
Zhiwei Zuo
Zhuo Tang
KenLi Li
Anwitaman Datta
AAML
MU
26
0
0
09 Jan 2024
Hot PATE: Private Aggregation of Distributions for Diverse Task
Edith Cohen
Benjamin Cohen-Wang
Xin Lyu
Jelani Nelson
Tamas Sarlos
Uri Stemmer
52
3
0
04 Dec 2023
Forgetting Private Textual Sequences in Language Models via Leave-One-Out Ensemble
Zhe Liu
Ozlem Kalinli
MU
KELM
28
2
0
28 Sep 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
42
11
0
11 Aug 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
43
23
0
20 Jul 2023
Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving Training Data Release for Machine Learning
Tamas Madl
Weijie Xu
Olivia Choudhury
Matthew Howard
31
5
0
04 Jul 2023
Protecting User Privacy in Remote Conversational Systems: A Privacy-Preserving framework based on text sanitization
Zhigang Kan
Linbo Qiao
Hao Yu
Liwen Peng
Yifu Gao
Dongsheng Li
28
20
0
14 Jun 2023
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
49
11
0
06 Jun 2023
Selective Pre-training for Private Fine-tuning
Da Yu
Sivakanth Gopi
Janardhan Kulkarni
Zinan Lin
Saurabh Naik
Tomasz Religa
Jian Yin
Huishuai Zhang
38
19
0
23 May 2023
On the Fairness Impacts of Private Ensembles Models
Cuong Tran
Ferdinando Fioretto
41
4
0
19 May 2023
Privacy-Preserving Ensemble Infused Enhanced Deep Neural Network Framework for Edge Cloud Convergence
Veronika Stephanie
I. Khalil
Mohammad Saidur Rahman
Mohammed Atiquzzaman
FedML
13
10
0
16 May 2023
Auditing and Generating Synthetic Data with Controllable Trust Trade-offs
Brian M. Belgodere
Pierre L. Dognin
Adam Ivankay
Igor Melnyk
Youssef Mroueh
...
Mattia Rigotti
Jerret Ross
Yair Schiff
Radhika Vedpathak
Richard A. Young
32
12
0
21 Apr 2023
30 Years of Synthetic Data
Joerg Drechsler
Anna Haensch
30
15
0
04 Apr 2023
From Private to Public: Benchmarking GANs in the Context of Private Time Series Classification
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
AI4TS
20
0
0
28 Mar 2023
Considerations on the Theory of Training Models with Differential Privacy
Marten van Dijk
Phuong Ha Nguyen
FedML
8
2
0
08 Mar 2023
Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
Van Tuan Tran
Huy Hieu Pham
Kok-Seng Wong
FedML
36
7
0
22 Feb 2023
Learning with Impartiality to Walk on the Pareto Frontier of Fairness, Privacy, and Utility
Mohammad Yaghini
Patty Liu
Franziska Boenisch
Nicolas Papernot
FedML
FaML
29
8
0
17 Feb 2023
An Empirical Analysis of Fairness Notions under Differential Privacy
Anderson Santana de Oliveira
Caelin Kaplan
Khawla Mallat
Tanmay Chakraborty
FedML
21
7
0
06 Feb 2023
HEAR4Health: A blueprint for making computer audition a staple of modern healthcare
Andreas Triantafyllopoulos
Alexander Kathan
Alice Baird
Lukas Christ
Alexander Gebhard
...
Shahin Amiriparian
K. D. Bartl-Pokorny
A. Batliner
Florian B. Pokorny
Björn W. Schuller
47
7
0
25 Jan 2023
Achieving Transparency in Distributed Machine Learning with Explainable Data Collaboration
A. Bogdanova
A. Imakura
T. Sakurai
Tomoya Fujii
Teppei Sakamoto
Hiroyuki Abe
FedML
19
2
0
06 Dec 2022
Private Multi-Winner Voting for Machine Learning
Adam Dziedzic
Christopher A. Choquette-Choo
Natalie Dullerud
Vinith Suriyakumar
Ali Shahin Shamsabadi
Muhammad Ahmad Kaleem
S. Jha
Nicolas Papernot
Xiao Wang
42
1
0
23 Nov 2022
Private Ad Modeling with DP-SGD
Carson E. Denison
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
Krishnagiri Narra
Amer Sinha
A. Varadarajan
Chiyuan Zhang
32
14
0
21 Nov 2022
DPD-fVAE: Synthetic Data Generation Using Federated Variational Autoencoders With Differentially-Private Decoder
Bjarne Pfitzner
B. Arnrich
FedML
33
19
0
21 Nov 2022
A Survey on Differential Privacy with Machine Learning and Future Outlook
Samah Baraheem
Z. Yao
SyDa
11
1
0
19 Nov 2022
Private Set Generation with Discriminative Information
Dingfan Chen
Raouf Kerkouche
Mario Fritz
DD
30
34
0
07 Nov 2022
Revisiting Hyperparameter Tuning with Differential Privacy
Youlong Ding
Xueyang Wu
21
0
0
03 Nov 2022
Private Semi-supervised Knowledge Transfer for Deep Learning from Noisy Labels
Qiuchen Zhang
Jing Ma
Jian Lou
Li Xiong
Xiaoqian Jiang
NoLa
21
0
0
03 Nov 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Yifan Yang
46
20
0
18 Oct 2022
Mitigating Unintended Memorization in Language Models via Alternating Teaching
Zhe Liu
Xuedong Zhang
Fuchun Peng
32
3
0
13 Oct 2022
An Ensemble Teacher-Student Learning Approach with Poisson Sub-sampling to Differential Privacy Preserving Speech Recognition
Chao-Han Huck Yang
Jun Qi
Sabato Marco Siniscalchi
Chin-Hui Lee
26
4
0
12 Oct 2022
An Experimental Study on Private Aggregation of Teacher Ensemble Learning for End-to-End Speech Recognition
Chao-Han Huck Yang
I-Fan Chen
A. Stolcke
Sabato Marco Siniscalchi
Chin-Hui Lee
32
2
0
11 Oct 2022
In Differential Privacy, There is Truth: On Vote Leakage in Ensemble Private Learning
Jiaqi Wang
R. Schuster
Ilia Shumailov
David Lie
Nicolas Papernot
FedML
33
3
0
22 Sep 2022
Private Estimation with Public Data
Alex Bie
Gautam Kamath
Vikrant Singhal
36
28
0
16 Aug 2022
Lifelong DP: Consistently Bounded Differential Privacy in Lifelong Machine Learning
Phung Lai
Han Hu
Nhathai Phan
Ruoming Jin
My T. Thai
An M. Chen
20
2
0
26 Jul 2022
Measuring Forgetting of Memorized Training Examples
Matthew Jagielski
Om Thakkar
Florian Tramèr
Daphne Ippolito
Katherine Lee
...
Eric Wallace
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Chiyuan Zhang
TDI
66
102
0
30 Jun 2022
Self-Supervised Pretraining for Differentially Private Learning
Arash Asadian
Evan Weidner
Lei Jiang
PICV
27
3
0
14 Jun 2022
Differential Privacy: What is all the noise about?
Roxana Dánger Mercaderes
38
3
0
19 May 2022
On the Difficulty of Defending Self-Supervised Learning against Model Extraction
Adam Dziedzic
Nikita Dhawan
Muhammad Ahmad Kaleem
Jonas Guan
Nicolas Papernot
MIACV
54
22
0
16 May 2022
1
2
3
Next