Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.09128
Cited By
Averaging Stochastic Gradient Descent on Riemannian Manifolds
26 February 2018
Nilesh Tripuraneni
Nicolas Flammarion
Francis R. Bach
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Averaging Stochastic Gradient Descent on Riemannian Manifolds"
50 / 56 papers shown
Title
Online Functional Principal Component Analysis on a Multidimensional Domain
Muye Nanshan
Nan Zhang
Jiguo Cao
26
0
0
04 May 2025
On the asymptotic behaviour of stochastic processes, with applications to supermartingale convergence, Dvoretzky's approximation theorem, and stochastic quasi-Fejér monotonicity
Morenikeji Neri
Nicholas Pischke
Thomas Powell
25
0
0
17 Apr 2025
Riemannian Optimization on Relaxed Indicator Matrix Manifold
Jinghui Yuan
Fangyuan Xie
Feiping Nie
Xuelong Li
77
0
0
26 Mar 2025
Riemannian Federated Learning via Averaging Gradient Stream
Zhenwei Huang
Wen Huang
Pratik Jawanpuria
Bamdev Mishra
FedML
40
1
0
11 Sep 2024
Enhancing Stochastic Optimization for Statistical Efficiency Using ROOT-SGD with Diminishing Stepsize
Tong Zhang
Chris Junchi Li
40
0
0
15 Jul 2024
Riemannian coordinate descent algorithms on matrix manifolds
Andi Han
Pratik Jawanpuria
Bamdev Mishra
53
5
0
04 Jun 2024
Quantitative Convergences of Lie Group Momentum Optimizers
Lingkai Kong
Molei Tao
38
2
0
30 May 2024
Streamlining in the Riemannian Realm: Efficient Riemannian Optimization with Loopless Variance Reduction
Yury Demidovich
Grigory Malinovsky
Peter Richtárik
61
2
0
11 Mar 2024
NRDF: Neural Riemannian Distance Fields for Learning Articulated Pose Priors
Yannan He
Garvita Tiwari
Tolga Birdal
J. E. Lenssen
Gerard Pons-Moll
34
8
0
05 Mar 2024
Stochastic Modified Flows for Riemannian Stochastic Gradient Descent
Benjamin Gess
Sebastian Kassing
Nimit Rana
45
0
0
02 Feb 2024
Learning Optimal Power Flow Value Functions with Input-Convex Neural Networks
Andrew W. Rosemberg
Mathieu Tanneau
Bruno Fanzeres
Joaquim Dias Garcia
Pascal Van Hentenryck
33
3
0
06 Oct 2023
Curvature-Independent Last-Iterate Convergence for Games on Riemannian Manifolds
Yong Cai
Michael I. Jordan
Tianyi Lin
Argyris Oikonomou
Emmanouil-Vasileios Vlatakis-Gkaragkounis
43
4
0
29 Jun 2023
Low-complexity subspace-descent over symmetric positive definite manifold
Yogesh Darmwal
K. Rajawat
52
3
0
03 May 2023
Fairness Uncertainty Quantification: How certain are you that the model is fair?
Abhishek Roy
P. Mohapatra
34
5
0
27 Apr 2023
Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints
Pierre Ablin
Simon Vary
Bin Gao
P.-A. Absil
57
8
0
29 Mar 2023
Learning Rate Schedules in the Presence of Distribution Shift
Matthew Fahrbach
Adel Javanmard
Vahab Mirrokni
Pratik Worah
29
6
0
27 Mar 2023
Convergence of variational Monte Carlo simulation and scale-invariant pre-training
Nilin Abrahamsen
Zhiyan Ding
Gil Goldshlager
Lin Lin
DRL
43
2
0
21 Mar 2023
Accelerated Riemannian Optimization: Handling Constraints with a Prox to Bound Geometric Penalties
David Martínez-Rubio
Sebastian Pokutta
35
9
0
26 Nov 2022
Riemannian accelerated gradient methods via extrapolation
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
27
9
0
13 Aug 2022
Riemannian Stochastic Gradient Method for Nested Composition Optimization
Dewei Zhang
S. Tajbakhsh
31
1
0
19 Jul 2022
On the Influence of Enforcing Model Identifiability on Learning dynamics of Gaussian Mixture Models
P. Esser
Frank Nielsen
21
0
0
17 Jun 2022
Riemannian stochastic approximation algorithms
Mohammad Reza Karimi
Ya-Ping Hsieh
P. Mertikopoulos
Andreas Krause
29
2
0
14 Jun 2022
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces
Michael I. Jordan
Tianyi Lin
Emmanouil-Vasileios Vlatakis-Gkaragkounis
34
19
0
04 Jun 2022
Sion's Minimax Theorem in Geodesic Metric Spaces and a Riemannian Extragradient Algorithm
Peiyuan Zhang
J.N. Zhang
S. Sra
29
8
0
13 Feb 2022
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
54
20
0
31 Jan 2022
Optimal variance-reduced stochastic approximation in Banach spaces
Wenlong Mou
K. Khamaru
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
44
8
0
21 Jan 2022
Towards Modeling and Resolving Singular Parameter Spaces using Stratifolds
P. Esser
Frank Nielsen
13
2
0
07 Dec 2021
A diffusion-map-based algorithm for gradient computation on manifolds and applications
A. A. Gomez
A. J. S. Neto
J. Zubelli
12
2
0
16 Aug 2021
Convergence Rates of Stochastic Gradient Descent under Infinite Noise Variance
Hongjian Wang
Mert Gurbuzbalaban
Lingjiong Zhu
Umut cSimcsekli
Murat A. Erdogdu
26
41
0
20 Feb 2021
On Riemannian Stochastic Approximation Schemes with Fixed Step-Size
Alain Durmus
P. Jiménez
Eric Moulines
Salem Said
29
12
0
15 Feb 2021
Fast and accurate optimization on the orthogonal manifold without retraction
Pierre Ablin
Gabriel Peyré
64
27
0
15 Feb 2021
No-go Theorem for Acceleration in the Hyperbolic Plane
Linus Hamilton
Ankur Moitra
27
21
0
14 Jan 2021
Global Riemannian Acceleration in Hyperbolic and Spherical Spaces
David Martínez-Rubio
50
19
0
07 Dec 2020
Adaptive and Momentum Methods on Manifolds Through Trivializations
Mario Lezcano Casado
20
8
0
09 Oct 2020
EigenGame: PCA as a Nash Equilibrium
I. Gemp
Brian McWilliams
Claire Vernade
T. Graepel
32
46
0
01 Oct 2020
Curvature-Dependant Global Convergence Rates for Optimization on Manifolds of Bounded Geometry
Mario Lezcano-Casado
27
12
0
06 Aug 2020
Momentum Accelerates Evolutionary Dynamics
Marc Harper
Joshua Safyan
28
2
0
05 Jul 2020
Variance reduction for Riemannian non-convex optimization with batch size adaptation
Andi Han
Junbin Gao
21
5
0
03 Jul 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
42
50
0
14 Jun 2020
Projection Robust Wasserstein Distance and Riemannian Optimization
Tianyi Lin
Chenyou Fan
Nhat Ho
Marco Cuturi
Michael I. Jordan
28
68
0
12 Jun 2020
Convergence Analysis of Riemannian Stochastic Approximation Schemes
Alain Durmus
P. Jiménez
Eric Moulines
Salem Said
Hoi-To Wai
19
10
0
27 May 2020
Stochastic Zeroth-order Riemannian Derivative Estimation and Optimization
Jiaxiang Li
Krishnakumar Balasubramanian
Shiqian Ma
12
5
0
25 Mar 2020
Gradient descent algorithms for Bures-Wasserstein barycenters
Sinho Chewi
Tyler Maunu
Philippe Rigollet
Austin J. Stromme
25
83
0
06 Jan 2020
Central limit theorems for stochastic gradient descent with averaging for stable manifolds
Steffen Dereich
Sebastian Kassing
79
11
0
19 Dec 2019
Calculating Optimistic Likelihoods Using (Geodesically) Convex Optimization
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
19
23
0
17 Oct 2019
Projection-free nonconvex stochastic optimization on Riemannian manifolds
Melanie Weber
S. Sra
29
17
0
09 Oct 2019
Escaping from saddle points on Riemannian manifolds
Yue Sun
Nicolas Flammarion
Maryam Fazel
31
71
0
18 Jun 2019
Robustness of accelerated first-order algorithms for strongly convex optimization problems
Hesameddin Mohammadi
Meisam Razaviyayn
M. Jovanović
17
41
0
27 May 2019
Some Limit Properties of Markov Chains Induced by Stochastic Recursive Algorithms
Abhishek Gupta
Hao Chen
Jianzong Pi
Gaurav Tendolkar
24
0
0
24 Apr 2019
Probabilistic Permutation Synchronization using the Riemannian Structure of the Birkhoff Polytope
Tolga Birdal
Umut Simsekli
35
37
0
11 Apr 2019
1
2
Next