ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09766
  4. Cited By
Learning Representations for Neural Network-Based Classification Using
  the Information Bottleneck Principle

Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle

27 February 2018
Rana Ali Amjad
Bernhard C. Geiger
ArXivPDFHTML

Papers citing "Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle"

41 / 91 papers shown
Title
A Theoretical-Empirical Approach to Estimating Sample Complexity of DNNs
A Theoretical-Empirical Approach to Estimating Sample Complexity of DNNs
Devansh Bisla
Apoorva Nandini Saridena
A. Choromańska
23
8
0
05 May 2021
InfoNEAT: Information Theory-based NeuroEvolution of Augmenting
  Topologies for Side-channel Analysis
InfoNEAT: Information Theory-based NeuroEvolution of Augmenting Topologies for Side-channel Analysis
R. Acharya
F. Ganji
Domenic Forte
AAML
35
24
0
30 Apr 2021
Drop-Bottleneck: Learning Discrete Compressed Representation for
  Noise-Robust Exploration
Drop-Bottleneck: Learning Discrete Compressed Representation for Noise-Robust Exploration
Jaekyeom Kim
Minjung Kim
Dongyeon Woo
Gunhee Kim
14
16
0
23 Mar 2021
Adversarial Information Bottleneck
Adversarial Information Bottleneck
Penglong Zhai
Shihua Zhang
AAML
8
8
0
28 Feb 2021
Task-oriented Communication Design in Cyber-Physical Systems: A Survey
  on Theory and Applications
Task-oriented Communication Design in Cyber-Physical Systems: A Survey on Theory and Applications
Arsham Mostaani
T. Vu
Shree Krishna Sharma
Van-Dinh Nguyen
Qi Liao
Symeon Chatzinotas
19
16
0
14 Feb 2021
Deep Deterministic Information Bottleneck with Matrix-based Entropy
  Functional
Deep Deterministic Information Bottleneck with Matrix-based Entropy Functional
Xi Yu
Shujian Yu
José C. Príncipe
AAML
11
26
0
31 Jan 2021
Measuring Dependence with Matrix-based Entropy Functional
Measuring Dependence with Matrix-based Entropy Functional
Shujian Yu
Francesco Alesiani
Xi Yu
Robert Jenssen
José C. Príncipe
11
24
0
25 Jan 2021
Disentangled Information Bottleneck
Disentangled Information Bottleneck
Ziqi Pan
Li Niu
Jianfu Zhang
Liqing Zhang
20
36
0
14 Dec 2020
Bottleneck Problems: Information and Estimation-Theoretic View
Bottleneck Problems: Information and Estimation-Theoretic View
S. Asoodeh
Flavio du Pin Calmon
14
18
0
12 Nov 2020
Examining the causal structures of deep neural networks using
  information theory
Examining the causal structures of deep neural networks using information theory
Simon Mattsson
Eric J. Michaud
Erik P. Hoel
6
9
0
26 Oct 2020
The Role of Mutual Information in Variational Classifiers
The Role of Mutual Information in Variational Classifiers
Matías Vera
L. Rey Vega
Pablo Piantanida
SSL
DRL
23
2
0
22 Oct 2020
Maximum-Entropy Adversarial Data Augmentation for Improved
  Generalization and Robustness
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OOD
AAML
6
165
0
15 Oct 2020
Learning Optimal Representations with the Decodable Information
  Bottleneck
Learning Optimal Representations with the Decodable Information Bottleneck
Yann Dubois
Douwe Kiela
D. Schwab
Ramakrishna Vedantam
10
43
0
27 Sep 2020
Learning to Learn with Variational Information Bottleneck for Domain
  Generalization
Learning to Learn with Variational Information Bottleneck for Domain Generalization
Yingjun Du
Jun Xu
Huan Xiong
Qiang Qiu
Xiantong Zhen
Cees G. M. Snoek
Ling Shao
BDL
OOD
22
163
0
15 Jul 2020
On the Information Plane of Autoencoders
On the Information Plane of Autoencoders
Nicolás I. Tapia
P. Estévez
12
19
0
15 May 2020
Renormalized Mutual Information for Artificial Scientific Discovery
Renormalized Mutual Information for Artificial Scientific Discovery
Leopoldo Sarra
A. Aiello
F. Marquardt
6
4
0
04 May 2020
The Information Bottleneck Problem and Its Applications in Machine
  Learning
The Information Bottleneck Problem and Its Applications in Machine Learning
Ziv Goldfeld
Yury Polyanskiy
13
129
0
30 Apr 2020
Why should we add early exits to neural networks?
Why should we add early exits to neural networks?
Simone Scardapane
M. Scarpiniti
E. Baccarelli
A. Uncini
6
117
0
27 Apr 2020
Unpacking Information Bottlenecks: Unifying Information-Theoretic
  Objectives in Deep Learning
Unpacking Information Bottlenecks: Unifying Information-Theoretic Objectives in Deep Learning
Andreas Kirsch
Clare Lyle
Y. Gal
11
16
0
27 Mar 2020
On Information Plane Analyses of Neural Network Classifiers -- A Review
On Information Plane Analyses of Neural Network Classifiers -- A Review
Bernhard C. Geiger
24
50
0
21 Mar 2020
BiDet: An Efficient Binarized Object Detector
BiDet: An Efficient Binarized Object Detector
Ziwei Wang
Ziyi Wu
Jiwen Lu
Jie Zhou
MQ
49
64
0
09 Mar 2020
The Conditional Entropy Bottleneck
The Conditional Entropy Bottleneck
Ian S. Fischer
OOD
19
115
0
13 Feb 2020
On the Estimation of Information Measures of Continuous Distributions
On the Estimation of Information Measures of Continuous Distributions
Georg Pichler
Pablo Piantanida
Günther Koliander
14
13
0
07 Feb 2020
On the Information Bottleneck Problems: Models, Connections,
  Applications and Information Theoretic Views
On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views
A. Zaidi
Iñaki Estella Aguerri
S. Shamai
6
89
0
31 Jan 2020
Intelligence, physics and information -- the tradeoff between accuracy
  and simplicity in machine learning
Intelligence, physics and information -- the tradeoff between accuracy and simplicity in machine learning
Tailin Wu
19
1
0
11 Jan 2020
The Convex Information Bottleneck Lagrangian
The Convex Information Bottleneck Lagrangian
Borja Rodríguez Gálvez
Ragnar Thobaben
Mikael Skoglund
14
28
0
25 Nov 2019
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Ravid Shwartz-Ziv
Alexander A. Alemi
11
21
0
20 Nov 2019
Information Bottleneck Theory on Convolutional Neural Networks
Information Bottleneck Theory on Convolutional Neural Networks
Jianing Li
Ding Liu
FAtt
20
3
0
09 Nov 2019
Information Plane Analysis of Deep Neural Networks via Matrix-Based
  Renyi's Entropy and Tensor Kernels
Information Plane Analysis of Deep Neural Networks via Matrix-Based Renyi's Entropy and Tensor Kernels
Kristoffer Wickstrøm
Sigurd Løkse
Michael C. Kampffmeyer
Shujian Yu
José C. Príncipe
Robert Jenssen
16
31
0
25 Sep 2019
Do Compressed Representations Generalize Better?
Do Compressed Representations Generalize Better?
Hassan Hafez-Kolahi
S. Kasaei
Mahdiyeh Soleymani-Baghshah
14
1
0
20 Sep 2019
Pareto-optimal data compression for binary classification tasks
Pareto-optimal data compression for binary classification tasks
Max Tegmark
Tailin Wu
11
16
0
23 Aug 2019
Feature selection of neural networks is skewed towards the less abstract
  cue
Feature selection of neural networks is skewed towards the less abstract cue
Marcell Wolnitza
B. Dellen
14
0
0
08 Aug 2019
Class-Conditional Compression and Disentanglement: Bridging the Gap
  between Neural Networks and Naive Bayes Classifiers
Class-Conditional Compression and Disentanglement: Bridging the Gap between Neural Networks and Naive Bayes Classifiers
Rana Ali Amjad
Bernhard C. Geiger
BDL
14
1
0
06 Jun 2019
Understanding the Behaviour of the Empirical Cross-Entropy Beyond the
  Training Distribution
Understanding the Behaviour of the Empirical Cross-Entropy Beyond the Training Distribution
Matías Vera
Pablo Piantanida
L. Rey Vega
21
0
0
28 May 2019
Minimal Achievable Sufficient Statistic Learning
Minimal Achievable Sufficient Statistic Learning
Milan Cvitkovic
Günther Koliander
17
12
0
19 May 2019
Wireless Network Intelligence at the Edge
Wireless Network Intelligence at the Edge
Jihong Park
S. Samarakoon
M. Bennis
Mérouane Debbah
11
518
0
07 Dec 2018
Estimating Information Flow in Deep Neural Networks
Estimating Information Flow in Deep Neural Networks
Ziv Goldfeld
E. Berg
Kristjan Greenewald
Igor Melnyk
Nam H. Nguyen
Brian Kingsbury
Yury Polyanskiy
17
32
0
12 Oct 2018
Caveats for information bottleneck in deterministic scenarios
Caveats for information bottleneck in deterministic scenarios
Artemy Kolchinsky
Brendan D. Tracey
S. Kuyk
13
81
0
23 Aug 2018
Understanding Neural Networks and Individual Neuron Importance via
  Information-Ordered Cumulative Ablation
Understanding Neural Networks and Individual Neuron Importance via Information-Ordered Cumulative Ablation
Rana Ali Amjad
Kairen Liu
Bernhard C. Geiger
FAtt
11
18
0
18 Apr 2018
Layer-wise Learning of Stochastic Neural Networks with Information
  Bottleneck
Layer-wise Learning of Stochastic Neural Networks with Information Bottleneck
Thanh T. Nguyen
Jaesik Choi
16
13
0
04 Dec 2017
Nonlinear Information Bottleneck
Nonlinear Information Bottleneck
Artemy Kolchinsky
Brendan D. Tracey
David Wolpert
12
152
0
06 May 2017
Previous
12