ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.00816
  4. Cited By
NetGAN: Generating Graphs via Random Walks

NetGAN: Generating Graphs via Random Walks

2 March 2018
Aleksandar Bojchevski
Oleksandr Shchur
Daniel Zügner
Stephan Günnemann
    GAN
    GNN
ArXivPDFHTML

Papers citing "NetGAN: Generating Graphs via Random Walks"

21 / 21 papers shown
Title
PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive
  and Exclusive Communities
PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
Daniel Zilberg
Ron Levie
24
0
0
18 Sep 2024
GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?
GraphMaker: Can Diffusion Models Generate Large Attributed Graphs?
Mufei Li
Eleonora Kreacic
Vamsi K. Potluru
Pan Li
DiffM
11
7
0
20 Oct 2023
Size Matters: Large Graph Generation with HiGGs
Size Matters: Large Graph Generation with HiGGs
Alex O. Davies
Nirav Ajmeri
Telmo de Menezes e Silva Filho
29
3
0
20 Jun 2023
Origin-Destination Network Generation via Gravity-Guided GAN
Origin-Destination Network Generation via Gravity-Guided GAN
Can Rong
Huandong Wang
Yong Li
6
5
0
06 Jun 2023
GrannGAN: Graph annotation generative adversarial networks
GrannGAN: Graph annotation generative adversarial networks
Yoann Boget
Magda Gregorova
Alexandros Kalousis
GAN
8
0
0
01 Dec 2022
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci
  Curvature
Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
K. Nguyen
Hieu Nong
T. Nguyen
Nhat Ho
Khuong N. Nguyen
Vinh Phu Nguyen
8
61
0
28 Nov 2022
Micro and Macro Level Graph Modeling for Graph Variational Auto-Encoders
Micro and Macro Level Graph Modeling for Graph Variational Auto-Encoders
Kiarash Zahirnia
Oliver Schulte
Parmis Naddaf
Ke Li
17
10
0
30 Oct 2022
A Survey on Temporal Graph Representation Learning and Generative
  Modeling
A Survey on Temporal Graph Representation Learning and Generative Modeling
Shubham Gupta
Srikanta J. Bedathur
AI4TS
AI4CE
11
6
0
25 Aug 2022
Data-Free Adversarial Knowledge Distillation for Graph Neural Networks
Data-Free Adversarial Knowledge Distillation for Graph Neural Networks
Yu-Lin Zhuang
Lingjuan Lyu
Chuan Shi
Carl Yang
Lichao Sun
9
16
0
08 May 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits
  of One-shot Graph Generators
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
20
66
0
04 Apr 2022
Interpretable Molecular Graph Generation via Monotonic Constraints
Interpretable Molecular Graph Generation via Monotonic Constraints
Yuanqi Du
Xiaojie Guo
Amarda Shehu
Liang Zhao
50
19
0
28 Feb 2022
Deep Graph Learning for Anomalous Citation Detection
Deep Graph Learning for Anomalous Citation Detection
Jiaying Liu
Feng Xia
Xu Feng
Jing Ren
Huan Liu
14
40
0
23 Feb 2022
Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural
  Networks
Learning Theory Can (Sometimes) Explain Generalisation in Graph Neural Networks
P. Esser
L. C. Vankadara
D. Ghoshdastidar
18
53
0
07 Dec 2021
Unconditional Scene Graph Generation
Unconditional Scene Graph Generation
Sarthak Garg
Helisa Dhamo
Azade Farshad
Sabrina Musatian
Nassir Navab
F. Tombari
10
22
0
12 Aug 2021
Synthetic Active Distribution System Generation via Unbalanced Graph
  Generative Adversarial Network
Synthetic Active Distribution System Generation via Unbalanced Graph Generative Adversarial Network
Rong Yan
Yuxuan Yuan
Zhaoyu Wang
Guangchao Geng
Q. Jiang
10
0
0
02 Aug 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
23
113
0
16 Dec 2020
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
96
8,188
0
03 Jan 2019
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
Johannes Klicpera
Aleksandar Bojchevski
Stephan Günnemann
GNN
8
1,623
0
14 Oct 2018
Generating Multi-label Discrete Patient Records using Generative
  Adversarial Networks
Generating Multi-label Discrete Patient Records using Generative Adversarial Networks
E. Choi
Siddharth Biswal
B. Malin
J. Duke
Walter F. Stewart
Jimeng Sun
SyDa
GAN
145
562
0
19 Mar 2017
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
161
1,926
0
24 Oct 2016
A survey of statistical network models
A survey of statistical network models
Anna Goldenberg
A. Zheng
S. Fienberg
E. Airoldi
118
975
0
29 Dec 2009
1