Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.01833
Cited By
v1
v2
v3 (latest)
Marginal Singularity, and the Benefits of Labels in Covariate-Shift
5 March 2018
Samory Kpotufe
Guillaume Martinet
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Marginal Singularity, and the Benefits of Labels in Covariate-Shift"
50 / 67 papers shown
Title
Computational Efficiency under Covariate Shift in Kernel Ridge Regression
Andrea Della Vecchia
Arnaud Mavakala Watusadisi
Ernesto De Vito
Lorenzo Rosasco
47
0
0
20 May 2025
Locally Private Nonparametric Contextual Multi-armed Bandits
Yuheng Ma
Feiyu Jiang
Zifeng Zhao
Hanfang Yang
Y. Yu
116
0
0
11 Mar 2025
Conformal Prediction Under Generalized Covariate Shift with Posterior Drift
Baozhen Wang
Xingye Qiao
152
0
0
25 Feb 2025
Deep Transfer Learning: Model Framework and Error Analysis
Yuling Jiao
Huazhen Lin
Yuchen Luo
Jerry Zhijian Yang
114
1
0
12 Oct 2024
Shape-restricted transfer learning analysis for generalized linear regression model
Stefan Langer
Tao Yu
Andreas Nürnberger
Jing Qin
58
0
0
31 Jul 2024
Minimax And Adaptive Transfer Learning for Nonparametric Classification under Distributed Differential Privacy Constraints
Arnab Auddy
T. T. Cai
Abhinav Chakraborty
95
1
0
28 Jun 2024
Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction
Kulunu Dharmakeerthi
Y. Hur
Tengyuan Liang
67
0
0
22 Jun 2024
Efficient Discrepancy Testing for Learning with Distribution Shift
Gautam Chandrasekaran
Adam R. Klivans
Vasilis Kontonis
Konstantinos Stavropoulos
Arsen Vasilyan
82
3
0
13 Jun 2024
High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization
Yihang Chen
Fanghui Liu
Taiji Suzuki
Volkan Cevher
84
1
0
05 Jun 2024
An adaptive transfer learning perspective on classification in non-stationary environments
Henry W J Reeve
86
0
0
28 May 2024
Understanding Forgetting in Continual Learning with Linear Regression
Meng Ding
Kaiyi Ji
Di Wang
Jinhui Xu
CLL
145
10
0
27 May 2024
Harnessing the Power of Vicinity-Informed Analysis for Classification under Covariate Shift
Mitsuhiro Fujikawa
Yohei Akimoto
Jun Sakuma
Kazuto Fukuchi
48
0
0
27 May 2024
Sharp analysis of out-of-distribution error for "importance-weighted" estimators in the overparameterized regime
Kuo-Wei Lai
Vidya Muthukumar
90
0
0
10 May 2024
Fast Computation of Leave-One-Out Cross-Validation for
k
k
k
-NN Regression
Motonobu Kanagawa
384
0
0
08 May 2024
Causally Inspired Regularization Enables Domain General Representations
Olawale Salaudeen
Oluwasanmi Koyejo
OOD
CML
63
2
0
25 Apr 2024
Transfer Learning Beyond Bounded Density Ratios
Alkis Kalavasis
Ilias Zadik
Manolis Zampetakis
94
5
0
18 Mar 2024
On the design-dependent suboptimality of the Lasso
Reese Pathak
Cong Ma
72
5
0
01 Feb 2024
Transfer Learning for Functional Mean Estimation: Phase Transition and Adaptive Algorithms
T. T. Cai
Dongwoo Kim
Hongming Pu
94
9
0
22 Jan 2024
Mitigating Covariate Shift in Misspecified Regression with Applications to Reinforcement Learning
Philip Amortila
Tongyi Cao
Akshay Krishnamurthy
OffRL
OOD
71
3
0
22 Jan 2024
Transfer Learning under Covariate Shift: Local
k
k
k
-Nearest Neighbours Regression with Heavy-Tailed Design
Petr Zamolodtchikov
Hanyuan Hang
OOD
35
0
0
21 Jan 2024
Nearest Neighbor Sampling for Covariate Shift Adaptation
Franccois Portier
Lionel Truquet
Ikko Yamane
OffRL
39
1
0
15 Dec 2023
Invariance assumptions for class distribution estimation
Dirk Tasche
OOD
68
4
0
28 Nov 2023
Model-free Test Time Adaptation for Out-Of-Distribution Detection
Yi-Fan Zhang
Xue Wang
Tian Zhou
Kun Yuan
Zhang Zhang
Liang Wang
Rong Jin
Tien-Ping Tan
TTA
OODD
80
4
0
28 Nov 2023
Towards a Unified Analysis of Kernel-based Methods Under Covariate Shift
Xingdong Feng
Xin He
Caixing Wang
Chao Wang
Jingnan Zhang
69
7
0
12 Oct 2023
Covariate shift in nonparametric regression with Markovian design
Lukas Trottner
54
0
0
17 Jul 2023
Best-Effort Adaptation
Pranjal Awasthi
Corinna Cortes
M. Mohri
86
8
0
10 May 2023
Classification Tree Pruning Under Covariate Shift
Nicholas Galbraith
Samory Kpotufe
78
1
0
07 May 2023
Limits of Model Selection under Transfer Learning
Steve Hanneke
Samory Kpotufe
Yasaman Mahdaviyeh
116
6
0
29 Apr 2023
AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation
Yi-Fan Zhang
Xue Wang
Kexin Jin
Kun Yuan
Zhang Zhang
Liang Wang
Rong Jin
Tien-Ping Tan
TTA
OOD
93
44
0
25 Apr 2023
Noisy recovery from random linear observations: Sharp minimax rates under elliptical constraints
Reese Pathak
Martin J. Wainwright
Lin Xiao
58
5
0
22 Mar 2023
When is Importance Weighting Correction Needed for Covariate Shift Adaptation?
Davit Gogolashvili
Matteo Zecchin
Motonobu Kanagawa
Marios Kountouris
Maurizio Filippone
65
7
0
07 Mar 2023
Pseudo-Labeling for Kernel Ridge Regression under Covariate Shift
Kaizheng Wang
66
12
0
20 Feb 2023
Adapting to Continuous Covariate Shift via Online Density Ratio Estimation
Yu Zhang
Zhenyu Zhang
Peng Zhao
Masashi Sugiyama
OOD
83
13
0
06 Feb 2023
Target Conditioned Representation Independence (TCRI); From Domain-Invariant to Domain-General Representations
Olawale Salaudeen
Oluwasanmi Koyejo
74
3
0
21 Dec 2022
Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics, Directional Convergence, and Equilibria
Tengyuan Liang
74
1
0
05 Dec 2022
Transfer Learning for Contextual Multi-armed Bandits
Changxiao Cai
T. Tony Cai
Hongzhe Li
127
19
0
22 Nov 2022
The out-of-sample prediction error of the square-root-LASSO and related estimators
J. M. Olea
Cynthia Rush
Amilcar Velez
J. Wiesel
OOD
90
6
0
14 Nov 2022
Importance Weighting Correction of Regularized Least-Squares for Covariate and Target Shifts
Davit Gogolashvili
OOD
54
1
0
18 Oct 2022
Automatically Score Tissue Images Like a Pathologist by Transfer Learning
Iris Yan
MedIm
22
1
0
09 Sep 2022
Domain-Specific Risk Minimization for Out-of-Distribution Generalization
Yi-Fan Zhang
Jindong Wang
Jian Liang
Zhang Zhang
Baosheng Yu
Liangdao Wang
Dacheng Tao
Xingxu Xie
OOD
119
17
0
18 Aug 2022
The Power and Limitation of Pretraining-Finetuning for Linear Regression under Covariate Shift
Jingfeng Wu
Difan Zou
Vladimir Braverman
Quanquan Gu
Sham Kakade
65
17
0
03 Aug 2022
Breaking Correlation Shift via Conditional Invariant Regularizer
Mingyang Yi
Ruoyu Wang
Jiacheng Sun
Zhenguo Li
Zhi-Ming Ma
OODD
91
5
0
14 Jul 2022
A Correlation-Ratio Transfer Learning and Variational Stein's Paradox
Lu Lin
Weiyu Li
54
3
0
10 Jun 2022
On Causality in Domain Adaptation and Semi-Supervised Learning: an Information-Theoretic Analysis
Xuetong Wu
Biwei Huang
J. Manton
U. Aickelin
Jingge Zhu
CML
57
2
0
10 May 2022
Optimally tackling covariate shift in RKHS-based nonparametric regression
Cong Ma
Reese Pathak
Martin J. Wainwright
61
45
0
06 May 2022
Connecting sufficient conditions for domain adaptation: source-guided uncertainty, relaxed divergences and discrepancy localization
Sofien Dhouib
S. Maghsudi
83
2
0
09 Mar 2022
A Class of Geometric Structures in Transfer Learning: Minimax Bounds and Optimality
Xuhui Zhang
Jose H. Blanchet
Soumyadip Ghosh
M. Squillante
65
9
0
23 Feb 2022
Adaptive and Robust Multi-Task Learning
Yaqi Duan
Kaizheng Wang
130
27
0
10 Feb 2022
A new similarity measure for covariate shift with applications to nonparametric regression
Reese Pathak
Cong Ma
Martin J. Wainwright
96
32
0
06 Feb 2022
On the Limitations of General Purpose Domain Generalisation Methods
Henry Gouk
Ondrej Bohdal
Da Li
Timothy M. Hospedales
78
11
0
01 Feb 2022
1
2
Next