Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.05340
Cited By
v1
v2 (latest)
Measurement-based adaptation protocol with quantum reinforcement learning
14 March 2018
Francisco Albarrán-Arriagada
J. C. Retamal
Enrique Solano
L. Lamata
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Measurement-based adaptation protocol with quantum reinforcement learning"
9 / 9 papers shown
Title
Monte Carlo Tree Search based Hybrid Optimization of Variational Quantum Circuits
Jiahao Yao
Haoya Li
Marin Bukov
Lin Lin
Lexing Ying
48
16
0
30 Mar 2022
Photonic Quantum Policy Learning in OpenAI Gym
D. Nagy
Zsolt I. Tabi
Péter Hága
Zsófia Kallus
Z. Zimborás
96
8
0
29 Aug 2021
Parametrized quantum policies for reinforcement learning
Sofiene Jerbi
Casper Gyurik
Simon Marshall
Hans J. Briegel
Vedran Dunjko
87
114
0
09 Mar 2021
Noise-Robust End-to-End Quantum Control using Deep Autoregressive Policy Networks
Jiahao Yao
Paul Köttering
Hans Gundlach
Lin Lin
Marin Bukov
95
14
0
12 Dec 2020
Reinforcement Learning for Many-Body Ground-State Preparation Inspired by Counterdiabatic Driving
Jiahao Yao
Lin Lin
Marin Bukov
BDL
AI4CE
120
62
0
07 Oct 2020
Quantum machine learning and quantum biomimetics: A perspective
L. Lamata
AI4CE
94
57
0
25 Apr 2020
Automated quantum programming via reinforcement learning for combinatorial optimization
K. McKiernan
Erik J. Davis
M. S. Alam
C. Rigetti
113
21
0
21 Aug 2019
Measurement-based adaptation protocol with quantum reinforcement learning in a Rigetti quantum computer
Julio Olivares-Sánchez
J. Casanova
Enrique Solano
L. Lamata
67
38
0
19 Nov 2018
A high-bias, low-variance introduction to Machine Learning for physicists
Pankaj Mehta
Marin Bukov
Ching-Hao Wang
A. G. Day
C. Richardson
Charles K. Fisher
D. Schwab
AI4CE
133
885
0
23 Mar 2018
1