Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.05999
Cited By
Escaping Saddles with Stochastic Gradients
15 March 2018
Hadi Daneshmand
Jonas Köhler
Aurélien Lucchi
Thomas Hofmann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Escaping Saddles with Stochastic Gradients"
25 / 25 papers shown
Title
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
38
0
0
08 Feb 2024
Score-Aware Policy-Gradient Methods and Performance Guarantees using Local Lyapunov Conditions: Applications to Product-Form Stochastic Networks and Queueing Systems
Céline Comte
Matthieu Jonckheere
J. Sanders
Albert Senen-Cerda
25
0
0
05 Dec 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
24
6
0
25 May 2023
Stochastic Dimension-reduced Second-order Methods for Policy Optimization
Jinsong Liu
Chen Xie
Qinwen Deng
Dongdong Ge
Yi-Li Ye
19
1
0
28 Jan 2023
An SDE for Modeling SAM: Theory and Insights
Enea Monzio Compagnoni
Luca Biggio
Antonio Orvieto
F. Proske
Hans Kersting
Aurélien Lucchi
21
13
0
19 Jan 2023
Escaping Saddle Points for Effective Generalization on Class-Imbalanced Data
Harsh Rangwani
Sumukh K Aithal
Mayank Mishra
R. Venkatesh Babu
26
27
0
28 Dec 2022
On the Overlooked Structure of Stochastic Gradients
Zeke Xie
Qian-Yuan Tang
Mingming Sun
P. Li
23
6
0
05 Dec 2022
Passage-Mask: A Learnable Regularization Strategy for Retriever-Reader Models
Shujian Zhang
Chengyue Gong
Xingchao Liu
RALM
37
6
0
02 Nov 2022
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
34
4
0
01 Oct 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
16
8
0
18 Feb 2022
Non-Asymptotic Analysis of Online Multiplicative Stochastic Gradient Descent
Riddhiman Bhattacharya
Tiefeng Jiang
8
0
0
14 Dec 2021
Exponential escape efficiency of SGD from sharp minima in non-stationary regime
Hikaru Ibayashi
Masaaki Imaizumi
26
4
0
07 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
25
1
0
25 Oct 2021
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
22
9
0
28 Jul 2021
Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization
Zeke Xie
Li-xin Yuan
Zhanxing Zhu
Masashi Sugiyama
13
29
0
31 Mar 2021
Provable Super-Convergence with a Large Cyclical Learning Rate
Samet Oymak
28
12
0
22 Feb 2021
Learning explanations that are hard to vary
Giambattista Parascandolo
Alexander Neitz
Antonio Orvieto
Luigi Gresele
Bernhard Schölkopf
FAtt
13
178
0
01 Sep 2020
On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems
P. Mertikopoulos
Nadav Hallak
Ali Kavis
V. Cevher
6
85
0
19 Jun 2020
Shadowing Properties of Optimization Algorithms
Antonio Orvieto
Aurélien Lucchi
17
18
0
12 Nov 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
K. Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
25
186
0
19 Jun 2019
On the Noisy Gradient Descent that Generalizes as SGD
Jingfeng Wu
Wenqing Hu
Haoyi Xiong
Jun Huan
Vladimir Braverman
Zhanxing Zhu
MLT
16
10
0
18 Jun 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
13
237
0
18 Jan 2019
SGD Converges to Global Minimum in Deep Learning via Star-convex Path
Yi Zhou
Junjie Yang
Huishuai Zhang
Yingbin Liang
Vahid Tarokh
14
71
0
02 Jan 2019
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
22
146
0
20 Jun 2018
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
177
1,185
0
30 Nov 2014
1