ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.06058
  4. Cited By
Constant-Time Predictive Distributions for Gaussian Processes

Constant-Time Predictive Distributions for Gaussian Processes

16 March 2018
Geoff Pleiss
J. Gardner
Kilian Q. Weinberger
A. Wilson
ArXivPDFHTML

Papers citing "Constant-Time Predictive Distributions for Gaussian Processes"

19 / 19 papers shown
Title
GPRat: Gaussian Process Regression with Asynchronous Tasks
GPRat: Gaussian Process Regression with Asynchronous Tasks
Maksim Helmann
Alexander Strack
Dirk Pflüger
GP
43
0
0
30 Apr 2025
Smooth Path Planning Using a Gaussian Process Regression Map for Mobile
  Robot Navigation
Smooth Path Planning Using a Gaussian Process Regression Map for Mobile Robot Navigation
Quentin Serdel
J. Marzat
Julien Moras
GP
18
1
0
08 Jul 2024
Gradients of Functions of Large Matrices
Gradients of Functions of Large Matrices
Nicholas Krämer
Pablo Moreno-Muñoz
Hrittik Roy
Søren Hauberg
34
0
0
27 May 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
50
1
0
22 Feb 2024
Large-scale magnetic field maps using structured kernel interpolation
  for Gaussian process regression
Large-scale magnetic field maps using structured kernel interpolation for Gaussian process regression
Clara Menzen
Marnix Fetter
Manon Kok
14
1
0
25 Oct 2023
Ensemble Gaussian Processes for Adaptive Autonomous Driving on
  Multi-friction Surfaces
Ensemble Gaussian Processes for Adaptive Autonomous Driving on Multi-friction Surfaces
Tomávs Nagy
Ahmad Amine
Truong X. Nghiem
Ugo Rosolia
Zirui Zang
Rahul Mangharam
21
7
0
23 Mar 2023
When are Iterative Gaussian Processes Reliably Accurate?
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
23
10
0
31 Dec 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
29
22
0
22 Oct 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks
  with Sparse Gaussian Processes
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
48
21
0
20 Sep 2021
Preconditioning for Scalable Gaussian Process Hyperparameter
  Optimization
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
J. Gardner
22
23
0
01 Jul 2021
Bayesian Optimization with High-Dimensional Outputs
Bayesian Optimization with High-Dimensional Outputs
Wesley J. Maddox
Maximilian Balandat
A. Wilson
E. Bakshy
UQCV
24
50
0
24 Jun 2021
Bayesian Algorithm Execution: Estimating Computable Properties of
  Black-box Functions Using Mutual Information
Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mutual Information
W. Neiswanger
Ke Alexander Wang
Stefano Ermon
MLAU
29
30
0
19 Apr 2021
Fast Adaptation with Linearized Neural Networks
Fast Adaptation with Linearized Neural Networks
Wesley J. Maddox
Shuai Tang
Pablo G. Moreno
A. Wilson
Andreas C. Damianou
29
32
0
02 Mar 2021
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process
  Regression Using Conjugate Gradients
Tighter Bounds on the Log Marginal Likelihood of Gaussian Process Regression Using Conjugate Gradients
A. Artemev
David R. Burt
Mark van der Wilk
23
18
0
16 Feb 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees
Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees
Shali Jiang
Daniel R. Jiang
Maximilian Balandat
Brian Karrer
J. Gardner
Roman Garnett
16
44
0
29 Jun 2020
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
J. Gardner
17
43
0
19 Jun 2020
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
26
93
0
14 Oct 2019
Max-value Entropy Search for Efficient Bayesian Optimization
Max-value Entropy Search for Efficient Bayesian Optimization
Zi Wang
Stefanie Jegelka
110
403
0
06 Mar 2017
1