Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.06523
Cited By
Stochastic model-based minimization of weakly convex functions
17 March 2018
Damek Davis
D. Drusvyatskiy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic model-based minimization of weakly convex functions"
48 / 48 papers shown
Title
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
52
6
0
28 Jan 2025
Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis
Jiajin Li
Lingling Zhu
Anthony Man-Cho So
54
4
0
17 Jan 2025
Towards Certified Unlearning for Deep Neural Networks
Binchi Zhang
Yushun Dong
Tianhao Wang
Jundong Li
MU
62
7
0
01 Aug 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
35
0
0
19 Jul 2024
Single-loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions
Quanqi Hu
Qi Qi
Zhaosong Lu
Tianbao Yang
34
1
0
28 May 2024
Random Scaling and Momentum for Non-smooth Non-convex Optimization
Qinzi Zhang
Ashok Cutkosky
35
4
0
16 May 2024
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Yuan Gao
Anton Rodomanov
Sebastian U. Stich
29
6
0
05 Mar 2024
Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems with Convex Constraints
Hari Dahal
Wei Liu
Yangyang Xu
29
5
0
15 Nov 2023
Moreau Envelope ADMM for Decentralized Weakly Convex Optimization
Reza Mirzaeifard
Naveen K. D. Venkategowda
A. Jung
Stefan Werner
19
0
0
31 Aug 2023
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
Modified Gauss-Newton Algorithms under Noise
Krishna Pillutla
Vincent Roulet
Sham Kakade
Zaïd Harchaoui
11
3
0
18 May 2023
MoMo: Momentum Models for Adaptive Learning Rates
Fabian Schaipp
Ruben Ohana
Michael Eickenberg
Aaron Defazio
Robert Mansel Gower
30
10
0
12 May 2023
Decentralized Adversarial Training over Graphs
Ying Cao
Elsa Rizk
Stefan Vlaski
A. H. Sayed
AAML
35
1
0
23 Mar 2023
Orthogonal Directions Constrained Gradient Method: from non-linear equality constraints to Stiefel manifold
S. Schechtman
D. Tiapkin
Michael Muehlebach
Eric Moulines
27
6
0
16 Mar 2023
Flexible Phase Dynamics for Bio-Plausible Contrastive Learning
Ezekiel Williams
C. Bredenberg
Guillaume Lajoie
11
6
0
24 Feb 2023
Deterministic Nonsmooth Nonconvex Optimization
Michael I. Jordan
Guy Kornowski
Tianyi Lin
Ohad Shamir
Manolis Zampetakis
49
24
0
16 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
24
56
0
08 Feb 2023
Robust variance-regularized risk minimization with concomitant scaling
Matthew J. Holland
28
1
0
27 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
32
2
0
09 Jan 2023
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
49
51
0
12 Sep 2022
Efficiently Computing Nash Equilibria in Adversarial Team Markov Games
Fivos Kalogiannis
Ioannis Anagnostides
Ioannis Panageas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Vaggos Chatziafratis
S. Stavroulakis
31
13
0
03 Aug 2022
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
33
178
0
28 Mar 2022
Flexible risk design using bi-directional dispersion
Matthew J. Holland
32
5
0
28 Mar 2022
Federated Minimax Optimization: Improved Convergence Analyses and Algorithms
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
21
46
0
09 Mar 2022
Consistent Approximations in Composite Optimization
J. Royset
14
8
0
13 Jan 2022
Mitigating Divergence of Latent Factors via Dual Ascent for Low Latency Event Prediction Models
A. Shtoff
Yair Koren
9
0
0
15 Nov 2021
Learning equilibria with personalized incentives in a class of nonmonotone games
F. Fabiani
Andrea Simonetto
Paul Goulart
14
11
0
06 Nov 2021
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Jikai Jin
Samir Bhatt
Haiyang Wang
Liwei Wang
25
47
0
24 Oct 2021
Tight and Robust Private Mean Estimation with Few Users
Cheng-Han Chiang
Vahab Mirrokni
Hung-yi Lee
FedML
31
28
0
22 Oct 2021
Stochastic Bias-Reduced Gradient Methods
Hilal Asi
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
14
29
0
17 Jun 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
27
58
0
25 Feb 2021
Stability and Convergence of Stochastic Gradient Clipping: Beyond Lipschitz Continuity and Smoothness
Vien V. Mai
M. Johansson
16
38
0
12 Feb 2021
Block majorization-minimization with diminishing radius for constrained nonconvex optimization
Hanbaek Lyu
Yuchen Li
13
10
0
07 Dec 2020
Coping with Label Shift via Distributionally Robust Optimisation
J. Zhang
A. Menon
Andreas Veit
Srinadh Bhojanapalli
Sanjiv Kumar
S. Sra
OOD
21
70
0
23 Oct 2020
Practical Precoding via Asynchronous Stochastic Successive Convex Approximation
Basil M. Idrees
J. Akhtar
K. Rajawat
8
6
0
03 Oct 2020
The Landscape of the Proximal Point Method for Nonconvex-Nonconcave Minimax Optimization
Benjamin Grimmer
Haihao Lu
Pratik Worah
Vahab Mirrokni
29
9
0
15 Jun 2020
A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning
Mert Gurbuzbalaban
A. Ruszczynski
Landi Zhu
13
9
0
08 Jun 2020
Geometry-Aware Gradient Algorithms for Neural Architecture Search
Liam Li
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
22
66
0
16 Apr 2020
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
ODL
28
54
0
25 Feb 2020
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization
Quoc Tran-Dinh
Nhan H. Pham
Lam M. Nguyen
13
22
0
17 Feb 2020
Protection Against Reconstruction and Its Applications in Private Federated Learning
Abhishek Bhowmick
John C. Duchi
Julien Freudiger
Gaurav Kapoor
Ryan M. Rogers
FedML
14
357
0
03 Dec 2018
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
Yi Tian Xu
Qi Qi
Qihang Lin
R. L. Jin
Tianbao Yang
35
40
0
28 Nov 2018
A Sufficient Condition for Convergences of Adam and RMSProp
Fangyu Zou
Li Shen
Zequn Jie
Weizhong Zhang
Wei Liu
19
362
0
23 Nov 2018
Stochastic (Approximate) Proximal Point Methods: Convergence, Optimality, and Adaptivity
Hilal Asi
John C. Duchi
6
123
0
12 Oct 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
10
126
0
24 Mar 2017
Accelerate Stochastic Subgradient Method by Leveraging Local Growth Condition
Yi Tian Xu
Qihang Lin
Tianbao Yang
28
11
0
04 Jul 2016
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
121
259
0
10 Dec 2012
1