ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.06523
  4. Cited By
Stochastic model-based minimization of weakly convex functions

Stochastic model-based minimization of weakly convex functions

17 March 2018
Damek Davis
D. Drusvyatskiy
ArXivPDFHTML

Papers citing "Stochastic model-based minimization of weakly convex functions"

48 / 48 papers shown
Title
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin
Chi Jin
Michael I. Jordan
52
6
0
28 Jan 2025
Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis
Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis
Jiajin Li
Lingling Zhu
Anthony Man-Cho So
54
4
0
17 Jan 2025
Towards Certified Unlearning for Deep Neural Networks
Towards Certified Unlearning for Deep Neural Networks
Binchi Zhang
Yushun Dong
Tianhao Wang
Jundong Li
MU
62
7
0
01 Aug 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
35
0
0
19 Jul 2024
Single-loop Stochastic Algorithms for Difference of Max-Structured
  Weakly Convex Functions
Single-loop Stochastic Algorithms for Difference of Max-Structured Weakly Convex Functions
Quanqi Hu
Qi Qi
Zhaosong Lu
Tianbao Yang
34
1
0
28 May 2024
Random Scaling and Momentum for Non-smooth Non-convex Optimization
Random Scaling and Momentum for Non-smooth Non-convex Optimization
Qinzi Zhang
Ashok Cutkosky
35
4
0
16 May 2024
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Yuan Gao
Anton Rodomanov
Sebastian U. Stich
29
6
0
05 Mar 2024
Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems
  with Convex Constraints
Damped Proximal Augmented Lagrangian Method for weakly-Convex Problems with Convex Constraints
Hari Dahal
Wei Liu
Yangyang Xu
29
5
0
15 Nov 2023
Moreau Envelope ADMM for Decentralized Weakly Convex Optimization
Moreau Envelope ADMM for Decentralized Weakly Convex Optimization
Reza Mirzaeifard
Naveen K. D. Venkategowda
A. Jung
Stefan Werner
19
0
0
31 Aug 2023
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
Modified Gauss-Newton Algorithms under Noise
Modified Gauss-Newton Algorithms under Noise
Krishna Pillutla
Vincent Roulet
Sham Kakade
Zaïd Harchaoui
11
3
0
18 May 2023
MoMo: Momentum Models for Adaptive Learning Rates
MoMo: Momentum Models for Adaptive Learning Rates
Fabian Schaipp
Ruben Ohana
Michael Eickenberg
Aaron Defazio
Robert Mansel Gower
30
10
0
12 May 2023
Decentralized Adversarial Training over Graphs
Decentralized Adversarial Training over Graphs
Ying Cao
Elsa Rizk
Stefan Vlaski
A. H. Sayed
AAML
35
1
0
23 Mar 2023
Orthogonal Directions Constrained Gradient Method: from non-linear
  equality constraints to Stiefel manifold
Orthogonal Directions Constrained Gradient Method: from non-linear equality constraints to Stiefel manifold
S. Schechtman
D. Tiapkin
Michael Muehlebach
Eric Moulines
27
6
0
16 Mar 2023
Flexible Phase Dynamics for Bio-Plausible Contrastive Learning
Flexible Phase Dynamics for Bio-Plausible Contrastive Learning
Ezekiel Williams
C. Bredenberg
Guillaume Lajoie
11
6
0
24 Feb 2023
Deterministic Nonsmooth Nonconvex Optimization
Deterministic Nonsmooth Nonconvex Optimization
Michael I. Jordan
Guy Kornowski
Tianyi Lin
Ohad Shamir
Manolis Zampetakis
49
24
0
16 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
24
56
0
08 Feb 2023
Robust variance-regularized risk minimization with concomitant scaling
Robust variance-regularized risk minimization with concomitant scaling
Matthew J. Holland
28
1
0
27 Jan 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods:
  Stability, Smoothness, and Deviation
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
32
2
0
09 Jan 2023
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth
  Nonconvex Optimization
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
49
51
0
12 Sep 2022
Efficiently Computing Nash Equilibria in Adversarial Team Markov Games
Efficiently Computing Nash Equilibria in Adversarial Team Markov Games
Fivos Kalogiannis
Ioannis Anagnostides
Ioannis Panageas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Vaggos Chatziafratis
S. Stavroulakis
31
13
0
03 Aug 2022
AUC Maximization in the Era of Big Data and AI: A Survey
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
33
178
0
28 Mar 2022
Flexible risk design using bi-directional dispersion
Flexible risk design using bi-directional dispersion
Matthew J. Holland
32
5
0
28 Mar 2022
Federated Minimax Optimization: Improved Convergence Analyses and
  Algorithms
Federated Minimax Optimization: Improved Convergence Analyses and Algorithms
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
21
46
0
09 Mar 2022
Consistent Approximations in Composite Optimization
Consistent Approximations in Composite Optimization
J. Royset
14
8
0
13 Jan 2022
Mitigating Divergence of Latent Factors via Dual Ascent for Low Latency
  Event Prediction Models
Mitigating Divergence of Latent Factors via Dual Ascent for Low Latency Event Prediction Models
A. Shtoff
Yair Koren
9
0
0
15 Nov 2021
Learning equilibria with personalized incentives in a class of
  nonmonotone games
Learning equilibria with personalized incentives in a class of nonmonotone games
F. Fabiani
Andrea Simonetto
Paul Goulart
14
11
0
06 Nov 2021
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis
Jikai Jin
Samir Bhatt
Haiyang Wang
Liwei Wang
25
47
0
24 Oct 2021
Tight and Robust Private Mean Estimation with Few Users
Tight and Robust Private Mean Estimation with Few Users
Cheng-Han Chiang
Vahab Mirrokni
Hung-yi Lee
FedML
31
28
0
22 Oct 2021
Stochastic Bias-Reduced Gradient Methods
Stochastic Bias-Reduced Gradient Methods
Hilal Asi
Y. Carmon
A. Jambulapati
Yujia Jin
Aaron Sidford
14
29
0
17 Jun 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and
  Communication Efficiency
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
27
58
0
25 Feb 2021
Stability and Convergence of Stochastic Gradient Clipping: Beyond
  Lipschitz Continuity and Smoothness
Stability and Convergence of Stochastic Gradient Clipping: Beyond Lipschitz Continuity and Smoothness
Vien V. Mai
M. Johansson
16
38
0
12 Feb 2021
Block majorization-minimization with diminishing radius for constrained
  nonconvex optimization
Block majorization-minimization with diminishing radius for constrained nonconvex optimization
Hanbaek Lyu
Yuchen Li
13
10
0
07 Dec 2020
Coping with Label Shift via Distributionally Robust Optimisation
Coping with Label Shift via Distributionally Robust Optimisation
J. Zhang
A. Menon
Andreas Veit
Srinadh Bhojanapalli
Sanjiv Kumar
S. Sra
OOD
21
70
0
23 Oct 2020
Practical Precoding via Asynchronous Stochastic Successive Convex
  Approximation
Practical Precoding via Asynchronous Stochastic Successive Convex Approximation
Basil M. Idrees
J. Akhtar
K. Rajawat
8
6
0
03 Oct 2020
The Landscape of the Proximal Point Method for Nonconvex-Nonconcave
  Minimax Optimization
The Landscape of the Proximal Point Method for Nonconvex-Nonconcave Minimax Optimization
Benjamin Grimmer
Haihao Lu
Pratik Worah
Vahab Mirrokni
29
9
0
15 Jun 2020
A Stochastic Subgradient Method for Distributionally Robust Non-Convex
  Learning
A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning
Mert Gurbuzbalaban
A. Ruszczynski
Landi Zhu
13
9
0
08 Jun 2020
Geometry-Aware Gradient Algorithms for Neural Architecture Search
Geometry-Aware Gradient Algorithms for Neural Architecture Search
Liam Li
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
22
66
0
16 Apr 2020
Biased Stochastic First-Order Methods for Conditional Stochastic
  Optimization and Applications in Meta Learning
Biased Stochastic First-Order Methods for Conditional Stochastic Optimization and Applications in Meta Learning
Yifan Hu
Siqi Zhang
Xin Chen
Niao He
ODL
28
54
0
25 Feb 2020
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional
  Optimization
Stochastic Gauss-Newton Algorithms for Nonconvex Compositional Optimization
Quoc Tran-Dinh
Nhan H. Pham
Lam M. Nguyen
13
22
0
17 Feb 2020
Protection Against Reconstruction and Its Applications in Private
  Federated Learning
Protection Against Reconstruction and Its Applications in Private Federated Learning
Abhishek Bhowmick
John C. Duchi
Julien Freudiger
Gaurav Kapoor
Ryan M. Rogers
FedML
14
357
0
03 Dec 2018
Stochastic Optimization for DC Functions and Non-smooth Non-convex
  Regularizers with Non-asymptotic Convergence
Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence
Yi Tian Xu
Qi Qi
Qihang Lin
R. L. Jin
Tianbao Yang
35
40
0
28 Nov 2018
A Sufficient Condition for Convergences of Adam and RMSProp
A Sufficient Condition for Convergences of Adam and RMSProp
Fangyu Zou
Li Shen
Zequn Jie
Weizhong Zhang
Wei Liu
19
362
0
23 Nov 2018
Stochastic (Approximate) Proximal Point Methods: Convergence,
  Optimality, and Adaptivity
Stochastic (Approximate) Proximal Point Methods: Convergence, Optimality, and Adaptivity
Hilal Asi
John C. Duchi
6
123
0
12 Oct 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and
  Applications in Machine Learning
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
Stochastic Methods for Composite and Weakly Convex Optimization Problems
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
10
126
0
24 Mar 2017
Accelerate Stochastic Subgradient Method by Leveraging Local Growth
  Condition
Accelerate Stochastic Subgradient Method by Leveraging Local Growth Condition
Yi Tian Xu
Qihang Lin
Tianbao Yang
28
11
0
04 Jul 2016
A simpler approach to obtaining an O(1/t) convergence rate for the
  projected stochastic subgradient method
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method
Simon Lacoste-Julien
Mark W. Schmidt
Francis R. Bach
121
259
0
10 Dec 2012
1