Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.08337
Cited By
What do Deep Networks Like to See?
22 March 2018
Sebastián M. Palacio
Joachim Folz
Jörn Hees
Federico Raue
Damian Borth
Andreas Dengel
SSL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"What do Deep Networks Like to See?"
17 / 17 papers shown
Title
Bayesian and Convolutional Networks for Hierarchical Morphological Classification of Galaxies
Jonathan Serrano-Pérez
Raquel Díaz-Hernández
L. Sucar
51
1
0
03 May 2024
DreamCatcher: Revealing the Language of the Brain with fMRI using GPT Embedding
Subhrasankar Chatterjee
D. Samanta
97
4
0
16 Jun 2023
XAI Handbook: Towards a Unified Framework for Explainable AI
Sebastián M. Palacio
Adriano Lucieri
Mohsin Munir
Jörn Hees
Sheraz Ahmed
Andreas Dengel
56
32
0
14 May 2021
What Do Deep Nets Learn? Class-wise Patterns Revealed in the Input Space
Shihao Zhao
Xingjun Ma
Yisen Wang
James Bailey
Yue Liu
Yu-Gang Jiang
AAML
56
15
0
18 Jan 2021
A Study of Image Pre-processing for Faster Object Recognition
Md. Tanzil Shahriar
Huyue Li
10
7
0
31 Oct 2020
P2ExNet: Patch-based Prototype Explanation Network
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
36
4
0
05 May 2020
On Interpretability of Deep Learning based Skin Lesion Classifiers using Concept Activation Vectors
Adriano Lucieri
Muhammad Naseer Bajwa
S. Braun
M. I. Malik
Andreas Dengel
Sheraz Ahmed
MedIm
241
65
0
05 May 2020
TSInsight: A local-global attribution framework for interpretability in time-series data
Shoaib Ahmed Siddiqui
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
FAtt
AI4TS
48
12
0
06 Apr 2020
Exploring Simple and Transferable Recognition-Aware Image Processing
Zhuang Liu
H. Wang
Tinghui Zhou
Zhiqiang Shen
Bingyi Kang
Evan Shelhamer
Trevor Darrell
56
9
0
21 Oct 2019
Refining 6D Object Pose Predictions using Abstract Render-and-Compare
Arul Selvam Periyasamy
Max Schwarz
Sven Behnke
50
17
0
08 Oct 2019
Learning the Difference that Makes a Difference with Counterfactually-Augmented Data
Divyansh Kaushik
Eduard H. Hovy
Zachary Chase Lipton
CML
110
571
0
26 Sep 2019
What do Deep Networks Like to Read?
Jonas Pfeiffer
Aishwarya Kamath
Iryna Gurevych
Sebastian Ruder
47
3
0
10 Sep 2019
LIP: Local Importance-based Pooling
Ziteng Gao
Limin Wang
Gangshan Wu
FAtt
85
96
0
12 Aug 2019
Similarity-preserving Image-image Domain Adaptation for Person Re-identification
Weijian Deng
Liang Zheng
QiXiang Ye
Yi Yang
Jianbin Jiao
GAN
40
16
0
26 Nov 2018
Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations
Tianlu Wang
Jieyu Zhao
Mark Yatskar
Kai-Wei Chang
Vicente Ordonez
FaML
103
17
0
20 Nov 2018
An Overview of Computational Approaches for Interpretation Analysis
Philipp Blandfort
Jörn Hees
D. Patton
49
2
0
09 Nov 2018
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
71
32
0
21 Mar 2018
1