Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.08601
Cited By
Design Principles for Sparse Matrix Multiplication on the GPU
22 March 2018
Carl Yang
A. Buluç
John Douglas Owens
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Design Principles for Sparse Matrix Multiplication on the GPU"
11 / 11 papers shown
Title
RDMA-Based Algorithms for Sparse Matrix Multiplication on GPUs
Benjamin Brock
A. Buluç
Katherine Yelick
18
2
0
29 Nov 2023
Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks
Xiaoru Xie
Hongwu Peng
Amit Hasan
Shaoyi Huang
Jiahui Zhao
Haowen Fang
Wei Zhang
Tong Geng
O. Khan
Caiwen Ding
GNN
30
30
0
22 Aug 2023
A Programming Model for GPU Load Balancing
Muhammad Osama
Serban D. Porumbescu
John Douglas Owens
14
7
0
12 Jan 2023
Sgap: Towards Efficient Sparse Tensor Algebra Compilation for GPU
Genghan Zhang
Yuetong Zhao
Yanting Tao
Zhongming Yu
Guohao Dai
Sitao Huang
Yuanyuan Wen
Pavlos Petoumenos
Yu Wang
41
4
0
07 Sep 2022
Do We Need Anisotropic Graph Neural Networks?
Shyam A. Tailor
Felix L. Opolka
Pietro Lio'
Nicholas D. Lane
40
34
0
03 Apr 2021
GE-SpMM: General-purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural Networks
Guyue Huang
Guohao Dai
Yu Wang
Huazhong Yang
GNN
24
121
0
07 Jul 2020
Sparse GPU Kernels for Deep Learning
Trevor Gale
Matei A. Zaharia
C. Young
Erich Elsen
17
227
0
18 Jun 2020
GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs
Yuke Wang
Boyuan Feng
Gushu Li
Shuangchen Li
Lei Deng
Yuan Xie
Yufei Ding
GNN
13
121
0
11 Jun 2020
Reducing Communication in Graph Neural Network Training
Alok Tripathy
Katherine Yelick
A. Buluç
GNN
22
104
0
07 May 2020
Fast Sparse ConvNets
Erich Elsen
Marat Dukhan
Trevor Gale
Karen Simonyan
21
151
0
21 Nov 2019
GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU
Carl Yang
A. Buluç
John Douglas Owens
GNN
16
97
0
04 Aug 2019
1