ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.09151
  4. Cited By
Natural Gradients in Practice: Non-Conjugate Variational Inference in
  Gaussian Process Models

Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models

24 March 2018
Hugh Salimbeni
Stefanos Eleftheriadis
J. Hensman
    BDL
ArXivPDFHTML

Papers citing "Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models"

22 / 22 papers shown
Title
Spectral-factorized Positive-definite Curvature Learning for NN Training
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
47
0
0
10 Feb 2025
Function-Space Regularization for Deep Bayesian Classification
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
41
1
0
12 Jul 2023
DPVIm: Differentially Private Variational Inference Improved
DPVIm: Differentially Private Variational Inference Improved
Joonas Jälkö
Lukas Prediger
Antti Honkela
Samuel Kaski
34
3
0
28 Oct 2022
A Unified Perspective on Natural Gradient Variational Inference with
  Gaussian Mixture Models
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
Oleg Arenz
Philipp Dahlinger
Zihan Ye
Michael Volpp
Gerhard Neumann
39
15
0
23 Sep 2022
Fast emulation of density functional theory simulations using
  approximate Gaussian processes
Fast emulation of density functional theory simulations using approximate Gaussian processes
S. Stetzler
M. Grosskopf
E. Lawrence
23
0
0
24 Aug 2022
Non-Parametric Modeling of Spatio-Temporal Human Activity Based on
  Mobile Robot Observations
Non-Parametric Modeling of Spatio-Temporal Human Activity Based on Mobile Robot Observations
Marvin Stuede
Moritz Schappler
22
3
0
14 Mar 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
19
12
0
24 Feb 2022
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
19
20
0
05 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
19
31
0
02 Nov 2021
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
21
15
0
02 Nov 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
63
73
0
09 Jul 2021
Scalable Gaussian Processes for Data-Driven Design using Big Data with
  Categorical Factors
Scalable Gaussian Processes for Data-Driven Design using Big Data with Categorical Factors
Liwei Wang
Suraj Yerramilli
Akshay Iyer
D. Apley
Ping Zhu
Wei Chen
38
25
0
26 Jun 2021
Multivariate Probabilistic Regression with Natural Gradient Boosting
Multivariate Probabilistic Regression with Natural Gradient Boosting
Michael O’Malley
A. Sykulski
R. Lumpkin
Alejandro Schuler
BDL
17
7
0
07 Jun 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
35
23
0
12 Apr 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain
  Observations
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
24
8
0
28 Feb 2021
Fast Matrix Square Roots with Applications to Gaussian Processes and
  Bayesian Optimization
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
M. Jankowiak
David Eriksson
Anil Damle
Jacob R. Gardner
19
43
0
19 Jun 2020
Automated Augmented Conjugate Inference for Non-conjugate Gaussian
  Process Models
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models
Théo Galy-Fajou
F. Wenzel
Manfred Opper
29
4
0
26 Feb 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark W. Schmidt
Mohammad Emtiyaz Khan
BDL
37
35
0
24 Feb 2020
Doubly Sparse Variational Gaussian Processes
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
24
24
0
15 Jan 2020
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
24
55
0
27 Nov 2018
Harmonizable mixture kernels with variational Fourier features
Harmonizable mixture kernels with variational Fourier features
Zheyan Shen
Markus Heinonen
Samuel Kaski
19
17
0
10 Oct 2018
Fast yet Simple Natural-Gradient Descent for Variational Inference in
  Complex Models
Fast yet Simple Natural-Gradient Descent for Variational Inference in Complex Models
Mohammad Emtiyaz Khan
Didrik Nielsen
BDL
34
62
0
12 Jul 2018
1