ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.10161
  4. Cited By
Stein Points

Stein Points

27 March 2018
W. Chen
Lester W. Mackey
Jackson Gorham
François‐Xavier Briol
Chris J. Oates
ArXivPDFHTML

Papers citing "Stein Points"

27 / 27 papers shown
Title
A Dictionary of Closed-Form Kernel Mean Embeddings
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
78
1
0
26 Apr 2025
Stein Discrepancy for Unsupervised Domain Adaptation
Stein Discrepancy for Unsupervised Domain Adaptation
Anneke von Seeger
Dongmian Zou
Gilad Lerman
92
0
0
24 Feb 2025
Nyström Kernel Stein Discrepancy
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
46
1
0
12 Jun 2024
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational
  Inference Framework
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational Inference Framework
Fangyikang Wang
Huminhao Zhu
Chao Zhang
Han Zhao
Hui Qian
24
5
0
27 Dec 2023
Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum
  Problems
Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum Problems
Atsushi Nitanda
Kazusato Oko
Denny Wu
Nobuhito Takenouchi
Taiji Suzuki
29
3
0
06 Mar 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
40
12
0
27 Jan 2023
A Finite-Particle Convergence Rate for Stein Variational Gradient
  Descent
A Finite-Particle Convergence Rate for Stein Variational Gradient Descent
Jiaxin Shi
Lester W. Mackey
28
18
0
17 Nov 2022
Sequential Neural Score Estimation: Likelihood-Free Inference with
  Conditional Score Based Diffusion Models
Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models
Louis Sharrock
J. Simons
Song Liu
Mark Beaumont
DiffM
61
33
0
10 Oct 2022
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
48
14
0
26 Sep 2022
Model predictivity assessment: incremental test-set selection and
  accuracy evaluation
Model predictivity assessment: incremental test-set selection and accuracy evaluation
E. Fekhari
Bertrand Iooss
Joseph Muré
L. Pronzato
M. Rendas
8
13
0
08 Jul 2022
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
21
1
0
21 Nov 2021
Generalized Kernel Thinning
Generalized Kernel Thinning
Raaz Dwivedi
Lester W. Mackey
36
29
0
04 Oct 2021
Minimum Discrepancy Methods in Uncertainty Quantification
Minimum Discrepancy Methods in Uncertainty Quantification
Chris J. Oates
30
2
0
13 Sep 2021
Compressed Monte Carlo with application in particle filtering
Compressed Monte Carlo with application in particle filtering
Luca Martino
Victor Elvira
21
36
0
18 Jul 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
45
19
0
23 Jun 2021
Standardisation-function Kernel Stein Discrepancy: A Unifying View on
  Kernel Stein Discrepancy Tests for Goodness-of-fit
Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit
Wenkai Xu
32
4
0
23 Jun 2021
Kernel Stein Discrepancy Descent
Kernel Stein Discrepancy Descent
Anna Korba
Pierre-Cyril Aubin-Frankowski
Szymon Majewski
Pierre Ablin
19
50
0
20 May 2021
Stein's Method Meets Computational Statistics: A Review of Some Recent
  Developments
Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
Andreas Anastasiou
Alessandro Barp
F. Briol
B. Ebner
Robert E. Gaunt
...
Qiang Liu
Lester W. Mackey
Chris J. Oates
Gesine Reinert
Yvik Swan
22
35
0
07 May 2021
SPlit: An Optimal Method for Data Splitting
SPlit: An Optimal Method for Data Splitting
V. R. Joseph
Akhil Vakayil
17
124
0
20 Dec 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
32
27
0
25 Jan 2020
Minimum Stein Discrepancy Estimators
Minimum Stein Discrepancy Estimators
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
30
90
0
19 Jun 2019
Kernel Mean Matching for Content Addressability of GANs
Kernel Mean Matching for Content Addressability of GANs
Wittawat Jitkrittum
Patsorn Sangkloy
Muhammad Waleed Gondal
Amit Raj
James Hays
Bernhard Schölkopf
GAN
BDL
24
9
0
14 May 2019
Stein Point Markov Chain Monte Carlo
Stein Point Markov Chain Monte Carlo
W. Chen
Alessandro Barp
François‐Xavier Briol
Jackson Gorham
Mark Girolami
Lester W. Mackey
Chris J. Oates
30
56
0
09 May 2019
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
Fisher Efficient Inference of Intractable Models
Fisher Efficient Inference of Intractable Models
Song Liu
Takafumi Kanamori
Wittawat Jitkrittum
Yu Chen
29
14
0
18 May 2018
Measuring Sample Quality with Kernels
Measuring Sample Quality with Kernels
Jackson Gorham
Lester W. Mackey
86
222
0
06 Mar 2017
A Kernel Test of Goodness of Fit
A Kernel Test of Goodness of Fit
Kacper P. Chwialkowski
Heiko Strathmann
A. Gretton
BDL
107
324
0
09 Feb 2016
1