ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.00057
  4. Cited By
Understanding Autoencoders with Information Theoretic Concepts

Understanding Autoencoders with Information Theoretic Concepts

30 March 2018
Shujian Yu
José C. Príncipe
    AI4CE
ArXivPDFHTML

Papers citing "Understanding Autoencoders with Information Theoretic Concepts"

16 / 16 papers shown
Title
MOLE: MOdular Learning FramEwork via Mutual Information Maximization
MOLE: MOdular Learning FramEwork via Mutual Information Maximization
Tianchao Li
Yulong Pei
25
0
0
15 Aug 2023
Revisiting the Robustness of the Minimum Error Entropy Criterion: A
  Transfer Learning Case Study
Revisiting the Robustness of the Minimum Error Entropy Criterion: A Transfer Learning Case Study
Luis P. Silvestrin
Shujian Yu
Mark Hoogendoorn
OOD
24
1
0
17 Jul 2023
Local Intrinsic Dimensional Entropy
Local Intrinsic Dimensional Entropy
Rohan Ghosh
Mehul Motani
17
2
0
05 Apr 2023
Training Invertible Neural Networks as Autoencoders
Training Invertible Neural Networks as Autoencoders
The-Gia Leo Nguyen
Lynton Ardizzone
Ullrich Kothe
BDL
DRL
SSL
22
9
0
20 Mar 2023
Pain level and pain-related behaviour classification using GRU-based
  sparsely-connected RNNs
Pain level and pain-related behaviour classification using GRU-based sparsely-connected RNNs
Mohammad Mahdi Dehshibi
Temitayo A. Olugbade
F. Díaz-de-María
N. Bianchi-Berthouze
Ana Tajadura-Jiménez
24
10
0
20 Dec 2022
Self-Adaptive, Dynamic, Integrated Statistical and Information Theory
  Learning
Self-Adaptive, Dynamic, Integrated Statistical and Information Theory Learning
Z. Viharos
Ágnes Szücs
16
1
0
21 Nov 2022
Adaptation of Autoencoder for Sparsity Reduction From Clinical Notes
  Representation Learning
Adaptation of Autoencoder for Sparsity Reduction From Clinical Notes Representation Learning
Thanh-Dung Le
R. Noumeir
J. Rambaud
Guillaume Sans
P. Jouvet
21
7
0
26 Sep 2022
Statistical Hypothesis Testing Based on Machine Learning: Large
  Deviations Analysis
Statistical Hypothesis Testing Based on Machine Learning: Large Deviations Analysis
P. Braca
L. Millefiori
A. Aubry
S. Maranò
A. De Maio
P. Willett
27
12
0
22 Jul 2022
Mutual information estimation for graph convolutional neural networks
Mutual information estimation for graph convolutional neural networks
Marius Cervera Landsverk
S. Riemer-Sørensen
SSL
GNN
17
1
0
31 Mar 2022
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
24
17
0
30 Jun 2021
A Generative Model based Adversarial Security of Deep Learning and
  Linear Classifier Models
A Generative Model based Adversarial Security of Deep Learning and Linear Classifier Models
Ferhat Ozgur Catak
Samed Sivaslioglu
Kevser Sahinbas
AAML
14
7
0
17 Oct 2020
On Information Plane Analyses of Neural Network Classifiers -- A Review
On Information Plane Analyses of Neural Network Classifiers -- A Review
Bernhard C. Geiger
15
50
0
21 Mar 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
21
300
0
08 Jan 2020
Information Plane Analysis of Deep Neural Networks via Matrix-Based
  Renyi's Entropy and Tensor Kernels
Information Plane Analysis of Deep Neural Networks via Matrix-Based Renyi's Entropy and Tensor Kernels
Kristoffer Wickstrøm
Sigurd Løkse
Michael C. Kampffmeyer
Shujian Yu
José C. Príncipe
Robert Jenssen
13
31
0
25 Sep 2019
Partial Or Complete, That's The Question
Partial Or Complete, That's The Question
Qiang Ning
Hangfeng He
Chuchu Fan
Dan Roth
24
15
0
12 Jun 2019
An Introduction to Deep Learning for the Physical Layer
An Introduction to Deep Learning for the Physical Layer
Tim O'Shea
J. Hoydis
AI4CE
87
2,166
0
02 Feb 2017
1