ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.00891
  4. Cited By
Hyperspherical Variational Auto-Encoders
v1v2v3 (latest)

Hyperspherical Variational Auto-Encoders

3 April 2018
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
    DRLBDL
ArXiv (abs)PDFHTMLGithub (230★)

Papers citing "Hyperspherical Variational Auto-Encoders"

50 / 231 papers shown
Title
Parametric Generative Schemes with Geometric Constraints for Encoding
  and Synthesizing Airfoils
Parametric Generative Schemes with Geometric Constraints for Encoding and Synthesizing AirfoilsEngineering applications of artificial intelligence (EAAI), 2022
Hairun Xie
Jing Wang
Miao Zhang
189
13
0
05 May 2022
Wrapped Distributions on homogeneous Riemannian manifolds
Wrapped Distributions on homogeneous Riemannian manifolds
F. Galaz‐García
Marios Papamichalis
K. Turnbull
Simón Lunagómez
E. Airoldi
167
9
0
20 Apr 2022
AMCAD: Adaptive Mixed-Curvature Representation based Advertisement
  Retrieval System
AMCAD: Adaptive Mixed-Curvature Representation based Advertisement Retrieval SystemIEEE International Conference on Data Engineering (ICDE), 2022
Zhirong Xu
Shiyang Wen
Junshan Wang
Guojun Liu
Liang Wang
...
Lei Ding
Yan Zhang
Di Zhang
Han Zhu
Bo Zheng
117
11
0
28 Mar 2022
Representation Uncertainty in Self-Supervised Learning as Variational
  Inference
Representation Uncertainty in Self-Supervised Learning as Variational InferenceIEEE International Conference on Computer Vision (ICCV), 2022
Hiroki Nakamura
Masashi Okada
T. Taniguchi
173
22
0
22 Mar 2022
No Shifted Augmentations (NSA): compact distributions for robust
  self-supervised Anomaly Detection
No Shifted Augmentations (NSA): compact distributions for robust self-supervised Anomaly DetectionIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2022
Mohamed Yousef
Marcel R. Ackermann
Unmesh Kurup
Tom E. Bishop
OODDOOD
179
3
0
19 Mar 2022
Curvature Graph Generative Adversarial Networks
Curvature Graph Generative Adversarial NetworksThe Web Conference (WWW), 2022
Jianxin Li
Xingcheng Fu
Qingyun Sun
Cheng Ji
Jiajun Tan
Hongzhi Zhang
Hao Peng
GAN
106
17
0
03 Mar 2022
Probabilistic Embeddings Revisited
Probabilistic Embeddings RevisitedThe Visual Computer (TVC), 2022
I. Karpukhin
Stanislav Dereka
Sergey Kolesnikov
UQCVAAML
180
11
0
14 Feb 2022
AutoHEnsGNN: Winning Solution to AutoGraph Challenge for KDD Cup 2020
AutoHEnsGNN: Winning Solution to AutoGraph Challenge for KDD Cup 2020
Jin Xu
Mingjian Chen
Jianqiang Huang
Xingyuan Tang
Ke Hu
Jian Li
Jia Cheng
Jun Lei
147
2
0
25 Nov 2021
Geometric Priors for Scientific Generative Models in Inertial
  Confinement Fusion
Geometric Priors for Scientific Generative Models in Inertial Confinement Fusion
Ankita Shukla
Rushil Anirudh
E. Kur
Jayaraman J. Thiagarajan
P. Bremer
B. Spears
Tammy Ma
Pavan Turaga
GAN
53
1
0
24 Nov 2021
Multi network InfoMax: A pre-training method involving graph
  convolutional networks
Multi network InfoMax: A pre-training method involving graph convolutional networks
Usman Mahmood
Z. Fu
Vince D. Calhoun
Sergey Plis
AI4CE
190
1
0
01 Nov 2021
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent
  Space Distribution Matching in WAE
Momentum Contrastive Autoencoder: Using Contrastive Learning for Latent Space Distribution Matching in WAE
Devansh Arpit
Aadyot Bhatnagar
Huan Wang
Caiming Xiong
133
1
0
19 Oct 2021
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without
  Retraining
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining
Ahmed Imtiaz Humayun
Randall Balestriero
Richard Baraniuk
OOD
386
31
0
15 Oct 2021
On the Latent Holes of VAEs for Text Generation
On the Latent Holes of VAEs for Text Generation
Ruizhe Li
Xutan Peng
Chenghua Lin
199
5
0
07 Oct 2021
Causal Representation Learning for Context-Aware Face Transfer
Causal Representation Learning for Context-Aware Face Transfer
Gege Gao
Huaibo Huang
Chaoyou Fu
Ran He
CVBM
149
1
0
04 Oct 2021
Learning Compact Representations of Neural Networks using DiscriminAtive
  Masking (DAM)
Learning Compact Representations of Neural Networks using DiscriminAtive Masking (DAM)
Jie Bu
Arka Daw
M. Maruf
Anuj Karpatne
170
5
0
01 Oct 2021
SphereFace Revived: Unifying Hyperspherical Face Recognition
SphereFace Revived: Unifying Hyperspherical Face Recognition
Weiyang Liu
Yandong Wen
Bhiksha Raj
Rita Singh
Adrian Weller
3DHCVBM
250
51
0
12 Sep 2021
Transfer Learning from an Artificial Radiograph-landmark Dataset for
  Registration of the Anatomic Skull Model to Dual Fluoroscopic X-ray Images
Transfer Learning from an Artificial Radiograph-landmark Dataset for Registration of the Anatomic Skull Model to Dual Fluoroscopic X-ray Images
Chaochao Zhou
T. Cha
Yun Peng
Guoan Li
MedIm
111
10
0
14 Aug 2021
On The Distribution of Penultimate Activations of Classification
  Networks
On The Distribution of Penultimate Activations of Classification Networks
Minkyo Seo
Yoonho Lee
Suha Kwak
UQCV
175
5
0
05 Jul 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional AssaysNeural Information Processing Systems (NeurIPS), 2021
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
281
22
0
30 Jun 2021
Leveraging Hidden Structure in Self-Supervised Learning
Leveraging Hidden Structure in Self-Supervised Learning
Emanuele Sansone
SSL
102
0
0
30 Jun 2021
On the Generative Utility of Cyclic Conditionals
On the Generative Utility of Cyclic ConditionalsNeural Information Processing Systems (NeurIPS), 2021
Yu Xie
Haoyue Tang
Tao Qin
Jintao Wang
Tie-Yan Liu
201
3
0
30 Jun 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEsInternational Conference on Learning Representations (ICLR), 2021
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CMLDRL
249
11
0
25 Jun 2021
G-VAE, a Geometric Convolutional VAE for ProteinStructure Generation
G-VAE, a Geometric Convolutional VAE for ProteinStructure Generation
Niraj Pudasaini
Boulbaba Ben Amor
Xichan Lin
Fan Zhu
Yi Fang
DRL
106
7
0
22 Jun 2021
Neural Bellman-Ford Networks: A General Graph Neural Network Framework
  for Link Prediction
Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link PredictionNeural Information Processing Systems (NeurIPS), 2021
Zhaocheng Zhu
Zuobai Zhang
Louis-Pascal Xhonneux
Jian Tang
GNN
360
425
0
13 Jun 2021
Pulling back information geometry
Pulling back information geometryInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Georgios Arvanitidis
Miguel González Duque
Alison Pouplin
Dimitris Kalatzis
Søren Hauberg
DRL
202
22
0
09 Jun 2021
Pseudo-Riemannian Graph Convolutional Networks
Pseudo-Riemannian Graph Convolutional NetworksNeural Information Processing Systems (NeurIPS), 2021
Bo Xiong
Shichao Zhu
Nico Potyka
Shirui Pan
Chuan Zhou
Steffen Staab
GNN
253
35
0
06 Jun 2021
Local Disentanglement in Variational Auto-Encoders Using Jacobian $L_1$
  Regularization
Local Disentanglement in Variational Auto-Encoders Using Jacobian L1L_1L1​ RegularizationNeural Information Processing Systems (NeurIPS), 2021
Travers Rhodes
Daniel D. Lee
DRL
169
21
0
05 Jun 2021
Learning from Counterfactual Links for Link Prediction
Learning from Counterfactual Links for Link PredictionInternational Conference on Machine Learning (ICML), 2021
Tong Zhao
Gang Liu
Daheng Wang
Wenhao Yu
Meng Jiang
CMLOOD
262
115
0
03 Jun 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A ReviewInternational Statistical Review (ISR), 2021
Vincent Fortuin
UQCVBDL
414
157
0
14 May 2021
Autoencoding Under Normalization Constraints
Autoencoding Under Normalization ConstraintsInternational Conference on Machine Learning (ICML), 2021
Sangwoong Yoon
Yung-Kyun Noh
Frank C. Park
OODDUQCV
252
41
0
12 May 2021
Contrastive Attraction and Contrastive Repulsion for Representation
  Learning
Contrastive Attraction and Contrastive Repulsion for Representation Learning
Huangjie Zheng
Xu Chen
Jiangchao Yao
Hongxia Yang
Chunyuan Li
Ya Zhang
Hao Zhang
Ivor Tsang
Jingren Zhou
Mingyuan Zhou
SSL
260
13
0
08 May 2021
ResVGAE: Going Deeper with Residual Modules for Link Prediction
ResVGAE: Going Deeper with Residual Modules for Link Prediction
Indrit Nallbani
Reyhan Kevser Keser
Aydin Ayanzadeh
Nurullah cCalik
B. U. Toreyin
123
1
0
03 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational AutoencoderIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
341
83
0
30 Apr 2021
Eccentric Regularization: Minimizing Hyperspherical Energy without
  explicit projection
Eccentric Regularization: Minimizing Hyperspherical Energy without explicit projectionIEEE International Joint Conference on Neural Network (IJCNN), 2021
Xuefeng Li
Alan Blair
149
0
0
23 Apr 2021
Dual Metric Learning for Effective and Efficient Cross-Domain
  Recommendations
Dual Metric Learning for Effective and Efficient Cross-Domain RecommendationsIEEE Transactions on Knowledge and Data Engineering (TKDE), 2021
Pan Li
Alexander Tuzhilin
172
72
0
17 Apr 2021
von Mises-Fisher Loss: An Exploration of Embedding Geometries for
  Supervised Learning
von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised LearningIEEE International Conference on Computer Vision (ICCV), 2021
Tyler R. Scott
Andrew C. Gallagher
Michael C. Mozer
279
50
0
29 Mar 2021
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDLAI4CE
120
12
0
14 Mar 2021
Learning with Hyperspherical Uniformity
Learning with Hyperspherical UniformityInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Weiyang Liu
Rongmei Lin
Zhen Liu
Li Xiong
Bernhard Schölkopf
Adrian Weller
279
44
0
02 Mar 2021
A survey on Variational Autoencoders from a GreenAI perspective
A survey on Variational Autoencoders from a GreenAI perspectiveSN Computer Science (SN Comput. Sci.), 2021
Andrea Asperti
David Evangelista
E. Loli Piccolomini
DRL
173
66
0
01 Mar 2021
Addressing the Topological Defects of Disentanglement via Distributed
  Operators
Addressing the Topological Defects of Disentanglement via Distributed Operators
Diane Bouchacourt
Mark Ibrahim
Stéphane Deny
128
22
0
10 Feb 2021
On PyTorch Implementation of Density Estimators for von Mises-Fisher and
  Its Mixture
On PyTorch Implementation of Density Estimators for von Mises-Fisher and Its Mixture
Minyoung Kim
135
7
0
10 Feb 2021
Memory-Associated Differential Learning
Memory-Associated Differential Learning
Yi Luo
Aiguo Chen
Bei Hui
Ke Yan
186
3
0
10 Feb 2021
Variational Autoencoders for Learning Nonlinear Dynamics of Physical
  Systems
Variational Autoencoders for Learning Nonlinear Dynamics of Physical Systems
Ryan Lopez
P. Atzberger
DRLAI4CE
197
12
0
07 Dec 2020
Generative Capacity of Probabilistic Protein Sequence Models
Generative Capacity of Probabilistic Protein Sequence ModelsNature Communications (Nat Commun), 2020
Francisco McGee
Quentin Novinger
R. Levy
Vincenzo Carnevale
A. Haldane
273
38
0
03 Dec 2020
What is a meaningful representation of protein sequences?
What is a meaningful representation of protein sequences?Nature Communications (Nat Commun), 2020
N. Detlefsen
Søren Hauberg
Wouter Boomsma
443
136
0
28 Nov 2020
SHOT-VAE: Semi-supervised Deep Generative Models With Label-aware ELBO
  Approximations
SHOT-VAE: Semi-supervised Deep Generative Models With Label-aware ELBO ApproximationsAAAI Conference on Artificial Intelligence (AAAI), 2020
Hao Feng
Kezhi Kong
Minghao Chen
Tianye Zhang
Minfeng Zhu
Wei Chen
VLMDRL
364
26
0
21 Nov 2020
Cost-effective Variational Active Entity Resolution
Cost-effective Variational Active Entity ResolutionIEEE International Conference on Data Engineering (ICDE), 2020
Alex Bogatu
N. Paton
Mark Douthwaite
Stuart Davie
André Freitas
214
11
0
20 Nov 2020
Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
  Inference
Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational InferenceInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Ali Lotfi-Rezaabad
Rahi Kalantari
S. Vishwanath
Mingyuan Zhou
Jonathan I. Tamir
131
2
0
31 Oct 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
162
17
0
22 Oct 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
276
3
0
22 Oct 2020
Previous
12345
Next