ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.01431
  4. Cited By
Posterior Inference for Sparse Hierarchical Non-stationary Models

Posterior Inference for Sparse Hierarchical Non-stationary Models

4 April 2018
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
ArXivPDFHTML

Papers citing "Posterior Inference for Sparse Hierarchical Non-stationary Models"

11 / 11 papers shown
Title
STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
Simon Urbainczyk
Aretha L. Teckentrup
Jonas Latz
GP
17
0
0
16 May 2025
Bayesian Deep Learning with Multilevel Trace-class Neural Networks
Bayesian Deep Learning with Multilevel Trace-class Neural Networks
Neil K. Chada
Ajay Jasra
K. Law
Sumeetpal S. Singh
BDL
UQCV
83
3
0
24 Mar 2022
Hierarchical Non-Stationary Temporal Gaussian Processes With
  $L^1$-Regularization
Hierarchical Non-Stationary Temporal Gaussian Processes With L1L^1L1-Regularization
Zheng Zhao
Rui Gao
Simo Särkkä
20
0
0
20 May 2021
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
34
34
0
03 Nov 2020
Deep State-Space Gaussian Processes
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
43
19
0
11 Aug 2020
Blind hierarchical deconvolution
Blind hierarchical deconvolution
Arttu Arjas
L. Roininen
M. Sillanpää
A. Hauptmann
18
4
0
22 Jul 2020
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
M. Emzir
Sari Lasanen
Z. Purisha
L. Roininen
Simo Särkkä
24
9
0
28 Jun 2020
Multi-Scale Process Modelling and Distributed Computation for Spatial
  Data
Multi-Scale Process Modelling and Distributed Computation for Spatial Data
A. Zammit‐Mangion
J. Rougier
24
11
0
17 Jul 2019
Physics-Informed CoKriging: A Gaussian-Process-Regression-Based
  Multifidelity Method for Data-Model Convergence
Physics-Informed CoKriging: A Gaussian-Process-Regression-Based Multifidelity Method for Data-Model Convergence
Xiu Yang
D. Barajas-Solano
G. Tartakovsky
A. Tartakovsky
15
77
0
24 Nov 2018
Semivariogram methods for modeling Whittle-Matérn priors in Bayesian
  inverse problems
Semivariogram methods for modeling Whittle-Matérn priors in Bayesian inverse problems
Richard D. Brown
Johnathan M. Bardsley
Tiangang Cui
16
7
0
23 Nov 2018
Estimating deformations of isotropic Gaussian random fields on the plane
Estimating deformations of isotropic Gaussian random fields on the plane
E. Anderes
Michael L. Stein
263
91
0
04 Apr 2008
1