ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.03378
  4. Cited By
Maximum likelihood estimation for Gaussian processes under inequality
  constraints
v1v2 (latest)

Maximum likelihood estimation for Gaussian processes under inequality constraints

10 April 2018
François Bachoc
A. Lagnoux
A. F. López-Lopera
ArXiv (abs)PDFHTML

Papers citing "Maximum likelihood estimation for Gaussian processes under inequality constraints"

10 / 10 papers shown
Title
Error Bounds for a Kernel-Based Constrained Optimal Smoothing
  Approximation
Error Bounds for a Kernel-Based Constrained Optimal Smoothing Approximation
Laurence Grammont
François Bachoc
A. F. López-Lopera
41
0
0
12 Jul 2024
Beyond Surrogate Modeling: Learning the Local Volatility Via Shape
  Constraints
Beyond Surrogate Modeling: Learning the Local Volatility Via Shape Constraints
Marc Chataigner
Areski Cousin
Stéphane Crépey
M. Dixon
Djibril Gueye
54
8
0
20 Dec 2022
Asymptotic analysis of maximum likelihood estimation of covariance
  parameters for Gaussian processes: an introduction with proofs
Asymptotic analysis of maximum likelihood estimation of covariance parameters for Gaussian processes: an introduction with proofs
François Bachoc
54
13
0
15 Sep 2020
Sequential construction and dimension reduction of Gaussian processes
  under constraints
Sequential construction and dimension reduction of Gaussian processes under constraints
François Bachoc
A. F. López-Lopera
O. Roustant
26
0
0
09 Sep 2020
A Survey of Constrained Gaussian Process Regression: Approaches and
  Implementation Challenges
A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges
L. Swiler
Mamikon A. Gulian
A. Frankel
Cosmin Safta
J. Jakeman
GPAI4CE
110
106
0
16 Jun 2020
Maximum likelihood estimation and uncertainty quantification for
  Gaussian process approximation of deterministic functions
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
104
39
0
29 Jan 2020
Tensor Basis Gaussian Process Models of Hyperelastic Materials
Tensor Basis Gaussian Process Models of Hyperelastic Materials
A. Frankel
Reese E. Jones
L. Swiler
76
43
0
23 Dec 2019
Gaussian processes with linear operator inequality constraints
Gaussian processes with linear operator inequality constraints
C. Agrell
66
39
0
10 Jan 2019
Composite likelihood estimation for a gaussian process under fixed
  domain asymptotics
Composite likelihood estimation for a gaussian process under fixed domain asymptotics
François Bachoc
M. Bevilacqua
D. Velandia
49
12
0
24 Jul 2018
Gaussian Processes indexed on the symmetric group: prediction and
  learning
Gaussian Processes indexed on the symmetric group: prediction and learning
François Bachoc
Baptiste Broto
Fabrice Gamboa
Jean-Michel Loubes
16
0
0
16 Mar 2018
1