Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.04272
Cited By
Deep Neural Networks Motivated by Partial Differential Equations
12 April 2018
Lars Ruthotto
E. Haber
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks Motivated by Partial Differential Equations"
50 / 76 papers shown
Title
Geometric Fault-Tolerant Neural Network Tracking Control of Unknown Systems on Matrix Lie Groups
Robin Chhabra
Farzaneh Abdollahi
31
0
0
07 May 2025
Monotone Peridynamic Neural Operator for Nonlinear Material Modeling with Conditionally Unique Solutions
Jihong Wang
Xiaochuan Tian
Zhongqiang Zhang
Stewart Silling
S. Jafarzadeh
Yue Yu
39
0
0
02 May 2025
DISCO: learning to DISCover an evolution Operator for multi-physics-agnostic prediction
Rudy Morel
Jiequn Han
Edouard Oyallon
AI4CE
53
0
0
28 Apr 2025
OT-Transformer: A Continuous-time Transformer Architecture with Optimal Transport Regularization
Kelvin Kan
Xingjian Li
Stanley Osher
91
2
0
30 Jan 2025
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Andrzej Perzanowski
Tony Lindeberg
45
1
0
17 Sep 2024
Learning Regularization for Graph Inverse Problems
Moshe Eliasof
Md Shahriar Rahim Siddiqui
Carola-Bibiane Schönlieb
Eldad Haber
GNN
34
0
0
19 Aug 2024
Graph Neural Reaction Diffusion Models
Moshe Eliasof
Eldad Haber
Eran Treister
DiffM
AI4CE
30
2
0
16 Jun 2024
Deep Continuous Networks
Nergis Tomen
S. Pintea
J. C. V. Gemert
92
14
0
02 Feb 2024
Accelerating Fractional PINNs using Operational Matrices of Derivative
Tayebeh Taheri
Alireza Afzal Aghaei
Kourosh Parand
9
4
0
25 Jan 2024
Port-Hamiltonian Neural ODE Networks on Lie Groups For Robot Dynamics Learning and Control
T. Duong
Abdullah Altawaitan
Jason Stanley
Nikolay A. Atanasov
23
10
0
17 Jan 2024
Physics-aware Machine Learning Revolutionizes Scientific Paradigm for Machine Learning and Process-based Hydrology
Qingsong Xu
Yilei Shi
Jonathan Bamber
Ye Tuo
Ralf Ludwig
Xiao Xiang Zhu
AI4CE
18
9
0
08 Oct 2023
A Spectral Approach for Learning Spatiotemporal Neural Differential Equations
Mingtao Xia
Xiangting Li
Qijing Shen
Tom Chou
11
0
0
28 Sep 2023
PottsMGNet: A Mathematical Explanation of Encoder-Decoder Based Neural Networks
X. Tai
Hao Liu
Raymond H. F. Chan
25
10
0
18 Jul 2023
Learning Latent Dynamics via Invariant Decomposition and (Spatio-)Temporal Transformers
Kai Lagemann
C. Lagemann
Swarnava Mukherjee
34
2
0
21 Jun 2023
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
18
10
0
27 Apr 2023
Neural Delay Differential Equations: System Reconstruction and Image Classification
Qunxi Zhu
Yao Guo
Wei Lin
15
31
0
11 Apr 2023
GNN-based physics solver for time-independent PDEs
R. J. Gladstone
H. Rahmani
V. Suryakumar
Hadi Meidani
M. DÉlia
A. Zareei
AI4CE
20
15
0
28 Mar 2023
Learning Hamiltonian Systems with Mono-Implicit Runge-Kutta Methods
Haakon Noren
19
3
0
07 Mar 2023
Efficiency 360: Efficient Vision Transformers
Badri N. Patro
Vijay Srinivas Agneeswaran
21
6
0
16 Feb 2023
CQnet: convex-geometric interpretation and constraining neural-network trajectories
B. Peters
24
0
0
09 Feb 2023
Learning PDE Solution Operator for Continuous Modeling of Time-Series
Yesom Park
Jaemoo Choi
Changyeon Yoon
Changhoon Song
Myung-joo Kang
AI4TS
AI4CE
18
3
0
02 Feb 2023
Continuous Depth Recurrent Neural Differential Equations
Srinivas Anumasa
Geetakrishnasai Gunapati
P. K. Srijith
AI4TS
18
0
0
28 Dec 2022
PDEBENCH: An Extensive Benchmark for Scientific Machine Learning
M. Takamoto
T. Praditia
Raphael Leiteritz
Dan MacKinlay
Francesco Alesiani
Dirk Pflüger
Mathias Niepert
AI4CE
22
201
0
13 Oct 2022
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
38
10
0
05 Oct 2022
STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction
Jiahao Ji
Jingyuan Wang
Zhe Jiang
Jiawei Jiang
Hu Zhang
DiffM
PINN
OOD
AI4CE
12
77
0
01 Sep 2022
Estimating a potential without the agony of the partition function
E. Haber
Moshe Eliasof
L. Tenorio
25
2
0
19 Aug 2022
Zero Stability Well Predicts Performance of Convolutional Neural Networks
Liangming Chen
Long Jin
Mingsheng Shang
MLT
19
8
0
27 Jun 2022
Learning the parameters of a differential equation from its trajectory via the adjoint equation
I. Fekete
A. Molnár
P. Simon
11
0
0
17 Jun 2022
Do Residual Neural Networks discretize Neural Ordinary Differential Equations?
Michael E. Sander
Pierre Ablin
Gabriel Peyré
27
25
0
29 May 2022
Multi-resolution partial differential equations preserved learning framework for spatiotemporal dynamics
Xin-Yang Liu
Min Zhu
Lu Lu
Hao Sun
Jian-Xun Wang
PINN
AI4CE
28
45
0
09 May 2022
Learning time-dependent PDE solver using Message Passing Graph Neural Networks
Pourya Pilva
A. Zareei
AI4CE
25
7
0
15 Apr 2022
Learning continuous models for continuous physics
Aditi S. Krishnapriyan
A. Queiruga
N. Benjamin Erichson
Michael W. Mahoney
AI4CE
21
32
0
17 Feb 2022
Bounded nonlinear forecasts of partially observed geophysical systems with physics-constrained deep learning
Said Ouala
Steven L. Brunton
A. Pascual
Bertrand Chapron
F. Collard
L. Gaultier
Ronan Fablet
PINN
AI4TS
AI4CE
18
10
0
11 Feb 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs
I. D. Rodriguez
Aaron D. Ames
Yisong Yue
33
49
0
05 Feb 2022
Imbedding Deep Neural Networks
A. Corbett
D. Kangin
AI4TS
20
2
0
31 Jan 2022
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
30
22
0
14 Dec 2021
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
21
3
0
25 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
25
93
0
02 Nov 2021
Sinkformers: Transformers with Doubly Stochastic Attention
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
21
76
0
22 Oct 2021
Solving Image PDEs with a Shallow Network
Pascal Getreuer
P. Milanfar
Xiyang Luo
24
1
0
15 Oct 2021
Kinematically consistent recurrent neural networks for learning inverse problems in wave propagation
Wrik Mallik
R. Jaiman
J. Jelovica
AI4CE
25
3
0
08 Oct 2021
slimTrain -- A Stochastic Approximation Method for Training Separable Deep Neural Networks
Elizabeth Newman
Julianne Chung
Matthias Chung
Lars Ruthotto
39
6
0
28 Sep 2021
Short-term traffic prediction using physics-aware neural networks
M. Pereira
Annika Lang
Balázs Kulcsár
26
20
0
21 Sep 2021
Quantized Convolutional Neural Networks Through the Lens of Partial Differential Equations
Ido Ben-Yair
Gil Ben Shalom
Moshe Eliasof
Eran Treister
MQ
16
5
0
31 Aug 2021
Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods
Tobias Alt
Karl Schrader
Joachim Weickert
Pascal Peter
M. Augustin
14
4
0
31 Aug 2021
m-RevNet: Deep Reversible Neural Networks with Momentum
Duo Li
Shangqi Gao
10
5
0
12 Aug 2021
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
Zhiqian Chen
Fanglan Chen
Lei Zhang
Taoran Ji
Kaiqun Fu
Liang Zhao
Feng Chen
Lingfei Wu
Charu C. Aggarwal
Chang-Tien Lu
36
18
0
21 Jul 2021
Cell-average based neural network method for hyperbolic and parabolic partial differential equations
Changxin Qiu
Jue Yan
14
10
0
02 Jul 2021
Residual Networks as Flows of Velocity Fields for Diffeomorphic Time Series Alignment
Hao Huang
Boulbaba Ben Amor
Xichan Lin
Fan Zhu
Yi Fang
AI4TS
MedIm
6
6
0
22 Jun 2021
Stateful ODE-Nets using Basis Function Expansions
A. Queiruga
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
27
16
0
21 Jun 2021
1
2
Next