Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.06473
Cited By
Robust Machine Comprehension Models via Adversarial Training
17 April 2018
Yicheng Wang
Joey Tianyi Zhou
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robust Machine Comprehension Models via Adversarial Training"
22 / 22 papers shown
Title
Contextual Breach: Assessing the Robustness of Transformer-based QA Models
Asir Saadat
Nahian Ibn Asad
Md Farhan Ishmam
AAML
46
0
0
17 Sep 2024
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
58
0
0
13 Mar 2024
No offence, Bert -- I insult only humans! Multiple addressees sentence-level attack on toxicity detection neural network
Sergey Berezin
R. Farahbakhsh
Noel Crespi
13
0
0
19 Oct 2023
A Survey of Safety and Trustworthiness of Large Language Models through the Lens of Verification and Validation
Xiaowei Huang
Wenjie Ruan
Wei Huang
Gao Jin
Yizhen Dong
...
Sihao Wu
Peipei Xu
Dengyu Wu
André Freitas
Mustafa A. Mustafa
ALM
39
82
0
19 May 2023
Evaluating the Robustness of Machine Reading Comprehension Models to Low Resource Entity Renaming
Clemencia Siro
T. Ajayi
20
2
0
06 Apr 2023
Data Augmentation for Neural NLP
Domagoj Pluscec
Jan Snajder
16
6
0
22 Feb 2023
Improving Lexical Embeddings for Robust Question Answering
Weiwen Xu
Bowei Zou
Wai Lam
A. Aw
OOD
AAML
21
1
0
28 Feb 2022
CLLD: Contrastive Learning with Label Distance for Text Classification
Jinhe Lan
Qingyuan Zhan
Chenhao Jiang
Kunping Yuan
Desheng Wang
VLM
34
2
0
25 Oct 2021
Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models
Kun Zhou
Wayne Xin Zhao
Sirui Wang
Fuzheng Zhang
Wei Yu Wu
Ji-Rong Wen
AAML
21
7
0
13 Sep 2021
CLINE: Contrastive Learning with Semantic Negative Examples for Natural Language Understanding
Dong Wang
Ning Ding
Pijian Li
Haitao Zheng
AAML
37
115
0
01 Jul 2021
An Empirical Survey of Data Augmentation for Limited Data Learning in NLP
Jiaao Chen
Derek Tam
Colin Raffel
Joey Tianyi Zhou
Diyi Yang
28
172
0
14 Jun 2021
Contrastive Fine-tuning Improves Robustness for Neural Rankers
Xiaofei Ma
Cicero Nogueira dos Santos
Andrew O. Arnold
13
20
0
27 May 2021
Can NLI Models Verify QA Systems' Predictions?
Jifan Chen
Eunsol Choi
Greg Durrett
23
54
0
18 Apr 2021
Are Multilingual BERT models robust? A Case Study on Adversarial Attacks for Multilingual Question Answering
Sara Rosenthal
Mihaela A. Bornea
Avirup Sil
AAML
31
10
0
15 Apr 2021
Counterfactual Variable Control for Robust and Interpretable Question Answering
S. Yu
Yulei Niu
Shuohang Wang
Jing Jiang
Qianru Sun
AAML
OOD
42
9
0
12 Oct 2020
Frequency-Guided Word Substitutions for Detecting Textual Adversarial Examples
Maximilian Mozes
Pontus Stenetorp
Bennett Kleinberg
Lewis D. Griffin
AAML
25
99
0
13 Apr 2020
A Survey on Machine Reading Comprehension Systems
Razieh Baradaran
Razieh Ghiasi
Hossein Amirkhani
FaML
13
85
0
06 Jan 2020
Stance Detection Benchmark: How Robust Is Your Stance Detection?
Benjamin Schiller
Johannes Daxenberger
Iryna Gurevych
11
95
0
06 Jan 2020
Improving Machine Reading Comprehension via Adversarial Training
Ziqing Yang
Yiming Cui
Wanxiang Che
Ting Liu
Shijin Wang
Guoping Hu
27
17
0
09 Nov 2019
Adversarial Attacks on Deep Learning Models in Natural Language Processing: A Survey
W. Zhang
Quan Z. Sheng
A. Alhazmi
Chenliang Li
AAML
24
57
0
21 Jan 2019
Attention-Guided Answer Distillation for Machine Reading Comprehension
Minghao Hu
Yuxing Peng
Furu Wei
Zhen Huang
Dongsheng Li
Nan Yang
M. Zhou
FaML
21
75
0
23 Aug 2018
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
264
3,110
0
04 Nov 2016
1