Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.06537
Cited By
Understanding Convolutional Neural Networks with Information Theory: An Initial Exploration
18 April 2018
Shujian Yu
Kristoffer Wickstrøm
Robert Jenssen
José C. Príncipe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Understanding Convolutional Neural Networks with Information Theory: An Initial Exploration"
35 / 35 papers shown
Title
Quantifying Privacy Leakage in Split Inference via Fisher-Approximated Shannon Information Analysis
Ruijun Deng
Zhihui Lu
Qiang Duan
FedML
46
0
0
14 Apr 2025
Cauchy-Schwarz Divergence Information Bottleneck for Regression
Shujian Yu
Xi Yu
Sigurd Løkse
Robert Jenssen
José C. Príncipe
UQCV
37
5
0
27 Apr 2024
Knowledge Distillation Based on Transformed Teacher Matching
Kaixiang Zheng
En-Hui Yang
32
19
0
17 Feb 2024
Wavelet Dynamic Selection Network for Inertial Sensor Signal Enhancement
Yifeng Wang
Yi Zhao
22
5
0
29 Dec 2023
MOLE: MOdular Learning FramEwork via Mutual Information Maximization
Tianchao Li
Yulong Pei
33
0
0
15 Aug 2023
Information Bottleneck Analysis of Deep Neural Networks via Lossy Compression
I. Butakov
Alexander Tolmachev
S. Malanchuk
A. Neopryatnaya
Alexey Frolov
K. Andreev
24
5
0
13 May 2023
New Adversarial Image Detection Based on Sentiment Analysis
Yulong Wang
Tianxiang Li
Shenghong Li
Xinnan Yuan
W. Ni
AAML
27
9
0
03 May 2023
Training Invertible Neural Networks as Autoencoders
The-Gia Leo Nguyen
Lynton Ardizzone
Ullrich Kothe
BDL
DRL
SSL
30
9
0
20 Mar 2023
Filter Pruning based on Information Capacity and Independence
Xiaolong Tang
Shuo Ye
Yufeng Shi
Tianheng Hu
Qinmu Peng
Xinge You
VLM
37
0
0
07 Mar 2023
Higher-order mutual information reveals synergistic sub-networks for multi-neuron importance
Kenzo Clauw
S. Stramaglia
Daniele Marinazzo
SSL
FAtt
30
6
0
01 Nov 2022
Synergistic information supports modality integration and flexible learning in neural networks solving multiple tasks
A. Proca
F. Rosas
A. Luppi
D. Bor
Matthew Crosby
P. Mediano
30
21
0
06 Oct 2022
A Measure of the Complexity of Neural Representations based on Partial Information Decomposition
David A. Ehrlich
Andreas C. Schneider
V. Priesemann
Michael Wibral
Abdullah Makkeh
11
18
0
21 Sep 2022
Mutual information estimation for graph convolutional neural networks
Marius Cervera Landsverk
S. Riemer-Sørensen
SSL
GNN
22
1
0
31 Mar 2022
HRel: Filter Pruning based on High Relevance between Activation Maps and Class Labels
C. Sarvani
Mrinmoy Ghorai
S. Dubey
S. H. Shabbeer Basha
VLM
39
37
0
22 Feb 2022
Computationally Efficient Approximations for Matrix-based Renyi's Entropy
Tieliang Gong
Yuxin Dong
Shujian Yu
B. Dong
67
2
0
27 Dec 2021
Information Theoretic Representation Distillation
Roy Miles
Adrian Lopez-Rodriguez
K. Mikolajczyk
MQ
13
21
0
01 Dec 2021
Disentanglement Analysis with Partial Information Decomposition
Seiya Tokui
Issei Sato
CoGe
DRL
20
15
0
31 Aug 2021
A Reflection on Learning from Data: Epistemology Issues and Limitations
Ahmad Hammoudeh
Sara Tedmori
Nadim Obeid
16
3
0
28 Jul 2021
Rethinking Hard-Parameter Sharing in Multi-Domain Learning
Lijun Zhang
Qizheng Yang
Xiao Liu
Hui Guan
OOD
31
14
0
23 Jul 2021
Information Bottleneck: Exact Analysis of (Quantized) Neural Networks
S. Lorenzen
Christian Igel
M. Nielsen
MQ
11
17
0
24 Jun 2021
Understanding Neural Networks with Logarithm Determinant Entropy Estimator
Zhanghao Zhouyin
Ding Liu
FAtt
16
8
0
08 May 2021
InfoNEAT: Information Theory-based NeuroEvolution of Augmenting Topologies for Side-channel Analysis
R. Acharya
F. Ganji
Domenic Forte
AAML
38
24
0
30 Apr 2021
Split Computing and Early Exiting for Deep Learning Applications: Survey and Research Challenges
Yoshitomo Matsubara
Marco Levorato
Francesco Restuccia
33
199
0
08 Mar 2021
Deep Deterministic Information Bottleneck with Matrix-based Entropy Functional
Xi Yu
Shujian Yu
José C. Príncipe
AAML
19
26
0
31 Jan 2021
The distance between the weights of the neural network is meaningful
Liqun Yang
Yijun Yang
Yao Wang
Zhenyu Yang
Wei Zeng
6
0
0
31 Jan 2021
Measuring Dependence with Matrix-based Entropy Functional
Shujian Yu
Francesco Alesiani
Xi Yu
Robert Jenssen
José C. Príncipe
21
24
0
25 Jan 2021
A Probabilistic Representation of Deep Learning for Improving The Information Theoretic Interpretability
Xinjie Lan
Kenneth Barner
FAtt
14
2
0
27 Oct 2020
PRI-VAE: Principle-of-Relevant-Information Variational Autoencoders
Yanjun Li
Shujian Yu
José C. Príncipe
Xiaolin Li
D. Wu
DRL
15
7
0
13 Jul 2020
On Information Plane Analyses of Neural Network Classifiers -- A Review
Bernhard C. Geiger
32
50
0
21 Mar 2020
Do Compressed Representations Generalize Better?
Hassan Hafez-Kolahi
S. Kasaei
Mahdiyeh Soleymani-Baghshah
19
1
0
20 Sep 2019
Dimensionality compression and expansion in Deep Neural Networks
Stefano Recanatesi
M. Farrell
Madhu S. Advani
Timothy Moore
Guillaume Lajoie
E. Shea-Brown
23
72
0
02 Jun 2019
Multivariate Extension of Matrix-based Renyi's α-order Entropy Functional
Shujian Yu
L. S. Giraldo
Robert Jenssen
José C. Príncipe
14
30
0
23 Aug 2018
Distributed Variational Representation Learning
Iñaki Estella Aguerri
Milad Sefidgaran
23
71
0
11 Jul 2018
Understanding Autoencoders with Information Theoretic Concepts
Shujian Yu
José C. Príncipe
AI4CE
49
132
0
30 Mar 2018
The HASYv2 dataset
Martin Thoma
VLM
24
36
0
29 Jan 2017
1