ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.08864
  4. Cited By
Learning to See the Invisible: End-to-End Trainable Amodal Instance
  Segmentation

Learning to See the Invisible: End-to-End Trainable Amodal Instance Segmentation

24 April 2018
P. Follmann
Rebecca König
Philipp Härtinger
Michael Klostermann
    VLM
    ISeg
ArXivPDFHTML

Papers citing "Learning to See the Invisible: End-to-End Trainable Amodal Instance Segmentation"

9 / 59 papers shown
Title
Visibility Guided NMS: Efficient Boosting of Amodal Object Detection in
  Crowded Traffic Scenes
Visibility Guided NMS: Efficient Boosting of Amodal Object Detection in Crowded Traffic Scenes
Nils Gählert
Silvio
Uwe Franke
Joachim Denzler
ObjD
8
20
0
15 Jun 2020
Footprints and Free Space from a Single Color Image
Footprints and Free Space from a Single Color Image
Jamie Watson
Michael Firman
Áron Monszpart
Gabriel J. Brostow
3DV
4
19
0
14 Apr 2020
Self-Supervised Scene De-occlusion
Self-Supervised Scene De-occlusion
Xiaohang Zhan
Xingang Pan
Bo Dai
Ziwei Liu
Dahua Lin
Chen Change Loy
45
138
0
06 Apr 2020
Deep Snake for Real-Time Instance Segmentation
Deep Snake for Real-Time Instance Segmentation
Sida Peng
W. Jiang
Huaijin Pi
Xiuli Li
Hujun Bao
Xiaowei Zhou
ISeg
SSeg
30
299
0
06 Jan 2020
Visualizing the Invisible: Occluded Vehicle Segmentation and Recovery
Visualizing the Invisible: Occluded Vehicle Segmentation and Recovery
Xiaosheng Yan
Yuanlong Yu
Feigege Wang
Wenxi Liu
Shengfeng He
Jianxiong Pan
9
33
0
22 Jul 2019
How to make a pizza: Learning a compositional layer-based GAN model
How to make a pizza: Learning a compositional layer-based GAN model
Dim P. Papadopoulos
Y. Tamaazousti
Ferda Ofli
Ingmar Weber
Antonio Torralba
CoGe
GAN
16
41
0
06 Jun 2019
Learning Semantics-aware Distance Map with Semantics Layering Network
  for Amodal Instance Segmentation
Learning Semantics-aware Distance Map with Semantics Layering Network for Amodal Instance Segmentation
Ziheng Zhang
Anpei Chen
Ling Xie
Jingyi Yu
Shenghua Gao
16
31
0
30 May 2019
Embodied Visual Recognition
Embodied Visual Recognition
Jianwei Yang
Zhile Ren
Mingze Xu
Xinlei Chen
David J. Crandall
Devi Parikh
Dhruv Batra
32
26
0
09 Apr 2019
Acquire, Augment, Segment & Enjoy: Weakly Supervised Instance
  Segmentation of Supermarket Products
Acquire, Augment, Segment & Enjoy: Weakly Supervised Instance Segmentation of Supermarket Products
P. Follmann
Bertram Drost
T. Böttger
9
5
0
05 Jul 2018
Previous
12