Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.11285
Cited By
Adversarially Robust Generalization Requires More Data
30 April 2018
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
A. Madry
OOD
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarially Robust Generalization Requires More Data"
50 / 146 papers shown
Title
Risk Analysis and Design Against Adversarial Actions
M. Campi
A. Carè
Luis G. Crespo
S. Garatti
Federico A. Ramponi
AAML
118
0
0
02 May 2025
Robust Feature Learning for Multi-Index Models in High Dimensions
Alireza Mousavi-Hosseini
Adel Javanmard
Murat A. Erdogdu
OOD
AAML
42
1
0
21 Oct 2024
Understanding Model Ensemble in Transferable Adversarial Attack
Wei Yao
Zeliang Zhang
Huayi Tang
Yong Liu
33
2
0
09 Oct 2024
Mitigating Memorization In Language Models
Mansi Sakarvadia
Aswathy Ajith
Arham Khan
Nathaniel Hudson
Caleb Geniesse
Kyle Chard
Yaoqing Yang
Ian Foster
Michael W. Mahoney
KELM
MU
53
0
0
03 Oct 2024
Evaluating Model Robustness Using Adaptive Sparse L0 Regularization
Weiyou Liu
Zhenyang Li
Weitong Chen
AAML
22
1
0
28 Aug 2024
Adversarial Robustification via Text-to-Image Diffusion Models
Daewon Choi
Jongheon Jeong
Huiwon Jang
Jinwoo Shin
DiffM
39
1
0
26 Jul 2024
MEAT: Median-Ensemble Adversarial Training for Improving Robustness and Generalization
Zhaozhe Hu
Jia-Li Yin
Bin Chen
Luojun Lin
Bo-Hao Chen
Ximeng Liu
AAML
28
0
0
20 Jun 2024
Adversaries With Incentives: A Strategic Alternative to Adversarial Robustness
Maayan Ehrenberg
Roy Ganz
Nir Rosenfeld
AAML
45
0
0
17 Jun 2024
Exploiting the Layered Intrinsic Dimensionality of Deep Models for Practical Adversarial Training
Enes Altinisik
Safa Messaoud
H. Sencar
Hassan Sajjad
Sanjay Chawla
AAML
43
0
0
27 May 2024
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
Nils Philipp Walter
Linara Adilova
Jilles Vreeken
Michael Kamp
AAML
43
2
0
27 May 2024
Uniformly Stable Algorithms for Adversarial Training and Beyond
Jiancong Xiao
Jiawei Zhang
Zhimin Luo
Asuman Ozdaglar
AAML
40
0
0
03 May 2024
From Robustness to Improved Generalization and Calibration in Pre-trained Language Models
Josip Jukić
Jan Snajder
31
0
0
31 Mar 2024
Asymptotic Behavior of Adversarial Training Estimator under
ℓ
∞
\ell_\infty
ℓ
∞
-Perturbation
Yiling Xie
Xiaoming Huo
36
2
0
27 Jan 2024
Conserve-Update-Revise to Cure Generalization and Robustness Trade-off in Adversarial Training
Shruthi Gowda
Bahram Zonooz
Elahe Arani
AAML
28
2
0
26 Jan 2024
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Yatong Bai
Brendon G. Anderson
Somayeh Sojoudi
AAML
22
2
0
26 Nov 2023
On The Relationship Between Universal Adversarial Attacks And Sparse Representations
Dana Weitzner
Raja Giryes
AAML
24
0
0
14 Nov 2023
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
René Vidal
26
8
0
28 Sep 2023
Distributed Extra-gradient with Optimal Complexity and Communication Guarantees
Ali Ramezani-Kebrya
Kimon Antonakopoulos
Igor Krawczuk
Justin Deschenaux
V. Cevher
32
2
0
17 Aug 2023
A Theoretical Perspective on Subnetwork Contributions to Adversarial Robustness
Jovon Craig
Joshua Andle
Theodore S. Nowak
S. Y. Sekeh
AAML
39
0
0
07 Jul 2023
On the Importance of Backbone to the Adversarial Robustness of Object Detectors
Xiao-Li Li
Hang Chen
Xiaolin Hu
AAML
38
4
0
27 May 2023
Fantastic DNN Classifiers and How to Identify them without Data
Nathaniel R. Dean
D. Sarkar
21
1
0
24 May 2023
Reliable learning in challenging environments
Maria-Florina Balcan
Steve Hanneke
Rattana Pukdee
Dravyansh Sharma
OOD
27
4
0
06 Apr 2023
Probing the Purview of Neural Networks via Gradient Analysis
Jinsol Lee
Charles Lehman
M. Prabhushankar
Ghassan AlRegib
29
7
0
06 Apr 2023
Beyond Empirical Risk Minimization: Local Structure Preserving Regularization for Improving Adversarial Robustness
Wei Wei
Jiahuan Zhou
Yingying Wu
AAML
13
0
0
29 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
36
34
0
19 Mar 2023
Certified Robust Neural Networks: Generalization and Corruption Resistance
Amine Bennouna
Ryan Lucas
Bart P. G. Van Parys
32
10
0
03 Mar 2023
Characterizing the Optimal 0-1 Loss for Multi-class Classification with a Test-time Attacker
Sihui Dai
Wen-Luan Ding
A. Bhagoji
Daniel Cullina
Ben Y. Zhao
Haitao Zheng
Prateek Mittal
AAML
27
2
0
21 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
16
207
0
09 Feb 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
28
18
0
29 Jan 2023
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
16
50
0
24 Jan 2023
Foundation models in brief: A historical, socio-technical focus
Johannes Schneider
VLM
23
9
0
17 Dec 2022
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
27
5
0
15 Dec 2022
Malign Overfitting: Interpolation Can Provably Preclude Invariance
Yoav Wald
G. Yona
Uri Shalit
Y. Carmon
15
5
0
28 Nov 2022
Adversarial Detection by Approximation of Ensemble Boundary
T. Windeatt
AAML
24
0
0
18 Nov 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
28
12
0
21 Oct 2022
Towards Understanding GD with Hard and Conjugate Pseudo-labels for Test-Time Adaptation
Jun-Kun Wang
Andre Wibisono
27
7
0
18 Oct 2022
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
24
30
0
03 Oct 2022
Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis
Jiancong Xiao
Zeyu Qin
Yanbo Fan
Baoyuan Wu
Jue Wang
Zhimin Luo
AAML
31
7
0
02 Oct 2022
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
22
2
0
27 Sep 2022
A Light Recipe to Train Robust Vision Transformers
Edoardo Debenedetti
Vikash Sehwag
Prateek Mittal
ViT
26
68
0
15 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
AugRmixAT: A Data Processing and Training Method for Improving Multiple Robustness and Generalization Performance
Xiaoliang Liu
S. Furao
Jian Zhao
Changhai Nie
AAML
13
1
0
21 Jul 2022
Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level Physically-Grounded Augmentations
Tianlong Chen
Peihao Wang
Zhiwen Fan
Zhangyang Wang
28
55
0
04 Jul 2022
On the Role of Generalization in Transferability of Adversarial Examples
Yilin Wang
Farzan Farnia
AAML
24
10
0
18 Jun 2022
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
CLL
21
4
0
15 Jun 2022
Adversarial Reprogramming Revisited
Matthias Englert
R. Lazic
AAML
21
8
0
07 Jun 2022
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Ruochen Jiao
Xiangguo Liu
Takami Sato
Qi Alfred Chen
Qi Zhu
AAML
28
20
0
27 May 2022
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
Binghui Li
Jikai Jin
Han Zhong
J. Hopcroft
Liwei Wang
OOD
74
27
0
27 May 2022
Learn2Weight: Parameter Adaptation against Similar-domain Adversarial Attacks
Siddhartha Datta
AAML
30
4
0
15 May 2022
A Simple Approach to Adversarial Robustness in Few-shot Image Classification
Akshayvarun Subramanya
Hamed Pirsiavash
VLM
21
6
0
11 Apr 2022
1
2
3
Next