Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.11285
Cited By
Adversarially Robust Generalization Requires More Data
30 April 2018
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
A. Madry
OOD
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarially Robust Generalization Requires More Data"
46 / 146 papers shown
Title
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
19
81
0
15 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking
Chong Xiang
A. Bhagoji
Vikash Sehwag
Prateek Mittal
AAML
22
29
0
17 May 2020
Efficiently Learning Adversarially Robust Halfspaces with Noise
Omar Montasser
Surbhi Goel
Ilias Diakonikolas
Nathan Srebro
13
32
0
15 May 2020
Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
Pranjal Awasthi
Natalie Frank
M. Mohri
AAML
26
56
0
28 Apr 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
26
8
0
23 Apr 2020
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
AAML
14
246
0
28 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
50
63
0
02 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
24
785
0
26 Feb 2020
CheXpedition: Investigating Generalization Challenges for Translation of Chest X-Ray Algorithms to the Clinical Setting
Pranav Rajpurkar
Anirudh Joshi
Anuj Pareek
Phil Chen
Amirhossein Kiani
Jeremy Irvin
A. Ng
M. Lungren
LM&MA
11
49
0
26 Feb 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
26
69
0
25 Feb 2020
Gödel's Sentence Is An Adversarial Example But Unsolvable
Xiaodong Qi
Lansheng Han
AAML
17
0
0
25 Feb 2020
MaxUp: A Simple Way to Improve Generalization of Neural Network Training
Chengyue Gong
Tongzheng Ren
Mao Ye
Qiang Liu
AAML
14
56
0
20 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
27
64
0
11 Feb 2020
Understanding the Decision Boundary of Deep Neural Networks: An Empirical Study
David Mickisch
F. Assion
Florens Greßner
W. Günther
M. Motta
AAML
16
34
0
05 Feb 2020
Rethinking Generalization of Neural Models: A Named Entity Recognition Case Study
Jinlan Fu
Pengfei Liu
Qi Zhang
Xuanjing Huang
AI4CE
25
73
0
12 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
22
107
0
27 Dec 2019
Universal adversarial examples in speech command classification
Jon Vadillo
Roberto Santana
AAML
29
29
0
22 Nov 2019
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Jingfeng Zhang
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
10
6
0
20 Nov 2019
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
24
68
0
06 Nov 2019
Privacy Enhanced Multimodal Neural Representations for Emotion Recognition
Mimansa Jaiswal
E. Provost
23
72
0
29 Oct 2019
Understanding and Quantifying Adversarial Examples Existence in Linear Classification
Xupeng Shi
A. Ding
AAML
14
3
0
27 Oct 2019
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
30
85
0
09 Oct 2019
A Closer Look at Data Bias in Neural Extractive Summarization Models
Ming Zhong
Danqing Wang
Pengfei Liu
Xipeng Qiu
Xuanjing Huang
40
42
0
30 Sep 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
21
230
0
24 Jul 2019
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
11
239
0
14 Jun 2019
Lower Bounds for Adversarially Robust PAC Learning
Dimitrios I. Diochnos
Saeed Mahloujifar
Mohammad Mahmoody
AAML
13
26
0
13 Jun 2019
Robustness to Adversarial Perturbations in Learning from Incomplete Data
Amir Najafi
S. Maeda
Masanori Koyama
Takeru Miyato
OOD
8
129
0
24 May 2019
Interpreting Adversarially Trained Convolutional Neural Networks
Tianyuan Zhang
Zhanxing Zhu
AAML
GAN
FAtt
22
157
0
23 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
17
374
0
30 Apr 2019
Variational Inference with Latent Space Quantization for Adversarial Resilience
Vinay Kyatham
P. PrathoshA.
Tarun Kumar Yadav
Deepak Mishra
Dheeraj Mundhra
AAML
13
3
0
24 Mar 2019
Interpreting Neural Networks Using Flip Points
Roozbeh Yousefzadeh
D. O’Leary
AAML
FAtt
19
17
0
21 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
The Odds are Odd: A Statistical Test for Detecting Adversarial Examples
Kevin Roth
Yannic Kilcher
Thomas Hofmann
AAML
16
175
0
13 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
22
318
0
29 Jan 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
12
717
0
28 Jan 2019
Cross-Entropy Loss and Low-Rank Features Have Responsibility for Adversarial Examples
Kamil Nar
Orhan Ocal
S. Shankar Sastry
K. Ramchandran
AAML
11
54
0
24 Jan 2019
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
11
68
0
13 Nov 2018
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
23
64
0
08 Nov 2018
Excessive Invariance Causes Adversarial Vulnerability
J. Jacobsen
Jens Behrmann
R. Zemel
Matthias Bethge
AAML
20
166
0
01 Nov 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
16
171
0
01 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
11
15
0
30 Sep 2018
Generalization Error in Deep Learning
Daniel Jakubovitz
Raja Giryes
M. Rodrigues
AI4CE
16
109
0
03 Aug 2018
Adversarial examples from computational constraints
Sébastien Bubeck
Eric Price
Ilya P. Razenshteyn
AAML
62
230
0
25 May 2018
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
14
368
0
23 May 2018
On Visual Hallmarks of Robustness to Adversarial Malware
Alex Huang
Abdullah Al-Dujaili
Erik Hemberg
Una-May O’Reilly
AAML
19
7
0
09 May 2018
Previous
1
2
3