Communities
Connect sessions
AI calendar
Organizations
Contact Sales
Search
Open menu
Home
Papers
All Papers
Title
Home
Papers
1805.00521
Cited By
v1
v2
v3
v4
v5 (latest)
Direct Runge-Kutta Discretization Achieves Acceleration
1 May 2018
J.N. Zhang
Aryan Mokhtari
S. Sra
Ali Jadbabaie
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Direct Runge-Kutta Discretization Achieves Acceleration"
27 / 27 papers shown
Title
Optimization using Parallel Gradient Evaluations on Multiple Parameters
Yash Chandak
Shiv Shankar
V. Gandikota
Philip S. Thomas
A. Mazumdar
42
0
0
06 Feb 2023
NAG-GS: Semi-Implicit, Accelerated and Robust Stochastic Optimizer
Valentin Leplat
D. Merkulov
Aleksandr Katrutsa
Daniel Bershatsky
Olga Tsymboi
Ivan Oseledets
185
4
0
29 Sep 2022
Domain Adversarial Training: A Game Perspective
David Acuna
M. Law
Guojun Zhang
Sanja Fidler
92
11
0
10 Feb 2022
A More Stable Accelerated Gradient Method Inspired by Continuous-Time Perspective
Yasong Feng
Weiguo Gao
131
0
0
09 Dec 2021
A Continuized View on Nesterov Acceleration for Stochastic Gradient Descent and Randomized Gossip
Mathieu Even
Raphael Berthier
Francis R. Bach
Nicolas Flammarion
Pierre Gaillard
Aymeric Dieuleveut
Laurent Massoulié
Adrien B. Taylor
165
23
0
10 Jun 2021
Fast symplectic integrator for Nesterov-type acceleration method
S. Goto
H. Hino
40
4
0
01 Jun 2021
A Contraction Theory Approach to Optimization Algorithms from Acceleration Flows
Pedro Cisneros-Velarde
Francesco Bullo
184
7
0
18 May 2021
Online Algorithms and Policies Using Adaptive and Machine Learning Approaches
Anuradha M. Annaswamy
A. Guha
Yingnan Cui
Sunbochen Tang
Peter A. Fisher
Joseph E. Gaudio
155
27
0
13 May 2021
Revisiting the Role of Euler Numerical Integration on Acceleration and Stability in Convex Optimization
Peiyuan Zhang
Antonio Orvieto
Hadi Daneshmand
Thomas Hofmann
Roy S. Smith
83
10
0
23 Feb 2021
Potential Function-based Framework for Making the Gradients Small in Convex and Min-Max Optimization
Jelena Diakonikolas
Puqian Wang
103
13
0
28 Jan 2021
Implicit Gradient Regularization
David Barrett
Benoit Dherin
212
163
0
23 Sep 2020
How Does Momentum Help Frank Wolfe?
Bingcong Li
M. Coutiño
G. Giannakis
G. Leus
97
7
0
19 Jun 2020
On dissipative symplectic integration with applications to gradient-based optimization
G. Francca
Michael I. Jordan
René Vidal
205
47
0
15 Apr 2020
Shadowing Properties of Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
101
18
0
12 Nov 2019
The Role of Memory in Stochastic Optimization
Antonio Orvieto
Jonas Köhler
Aurelien Lucchi
116
32
0
02 Jul 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
174
75
0
19 Jun 2019
Continuous Time Analysis of Momentum Methods
Nikola B. Kovachki
Andrew M. Stuart
173
38
0
10 Jun 2019
Generalized Momentum-Based Methods: A Hamiltonian Perspective
Jelena Diakonikolas
Michael I. Jordan
162
61
0
02 Jun 2019
Conformal Symplectic and Relativistic Optimization
G. Francca
Jeremias Sulam
Daniel P. Robinson
René Vidal
241
69
0
11 Mar 2019
Acceleration via Symplectic Discretization of High-Resolution Differential Equations
Neural Information Processing Systems (NeurIPS), 2025
Bin Shi
S. Du
Weijie J. Su
Michael I. Jordan
91
122
0
11 Feb 2019
Is There an Analog of Nesterov Acceleration for MCMC?
Yian Ma
Niladri Chatterji
Xiang Cheng
Nicolas Flammarion
Peter L. Bartlett
Michael I. Jordan
BDL
144
78
0
04 Feb 2019
A continuous-time analysis of distributed stochastic gradient
Nicholas M. Boffi
Jean-Jacques E. Slotine
103
15
0
28 Dec 2018
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
147
284
0
21 Oct 2018
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
Filip Tronarp
Hans Kersting
Simo Särkkä
Philipp Hennig
183
68
0
08 Oct 2018
Continuous-time Models for Stochastic Optimization Algorithms
Antonio Orvieto
Aurelien Lucchi
143
32
0
05 Oct 2018
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
Ningyuan Chen
Mert Gurbuzbalaban
Lingjiong Zhu
154
65
0
12 Sep 2018
Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced
S. Du
Wei Hu
Jason D. Lee
MLT
279
252
0
04 Jun 2018
1