ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.00932
  4. Cited By
Exploring the Limits of Weakly Supervised Pretraining

Exploring the Limits of Weakly Supervised Pretraining

2 May 2018
D. Mahajan
Ross B. Girshick
Vignesh Ramanathan
Kaiming He
Manohar Paluri
Yixuan Li
Ashwin R. Bharambe
L. V. D. van der Maaten
    VLM
ArXivPDFHTML

Papers citing "Exploring the Limits of Weakly Supervised Pretraining"

25 / 825 papers shown
Title
On the potential for open-endedness in neural networks
On the potential for open-endedness in neural networks
N. Guttenberg
N. Virgo
A. Penn
13
10
0
12 Dec 2018
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
11
1,450
0
11 Dec 2018
Theoretical Guarantees of Deep Embedding Losses Under Label Noise
Theoretical Guarantees of Deep Embedding Losses Under Label Noise
Nam Le
J. Odobez
NoLa
9
1
0
06 Dec 2018
Transferring Knowledge across Learning Processes
Transferring Knowledge across Learning Processes
Sebastian Flennerhag
Pablo G. Moreno
Neil D. Lawrence
Andreas C. Damianou
11
64
0
03 Dec 2018
Snorkel DryBell: A Case Study in Deploying Weak Supervision at
  Industrial Scale
Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale
Stephen H. Bach
Daniel Rodríguez
Yintao Liu
Chong Luo
Haidong Shao
...
Braden Hancock
H. Alborzi
Rahul Kuchhal
Christopher Ré
Rob Malkin
11
146
0
02 Dec 2018
Stochastic Gradient Push for Distributed Deep Learning
Stochastic Gradient Push for Distributed Deep Learning
Mahmoud Assran
Nicolas Loizou
Nicolas Ballas
Michael G. Rabbat
11
343
0
27 Nov 2018
Deep Learning Inference in Facebook Data Centers: Characterization,
  Performance Optimizations and Hardware Implications
Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications
Jongsoo Park
Maxim Naumov
Protonu Basu
Summer Deng
Aravind Kalaiah
...
Lin Qiao
Vijay Rao
Nadav Rotem
S. Yoo
M. Smelyanskiy
FedML
GNN
BDL
4
186
0
24 Nov 2018
A Simple Non-i.i.d. Sampling Approach for Efficient Training and Better
  Generalization
A Simple Non-i.i.d. Sampling Approach for Efficient Training and Better Generalization
Bowen Cheng
Yunchao Wei
Jiahui Yu
Shiyu Chang
Jinjun Xiong
Wen-mei W. Hwu
Thomas S. Huang
Humphrey Shi
OOD
VLM
24
6
0
23 Nov 2018
Rethinking ImageNet Pre-training
Rethinking ImageNet Pre-training
Kaiming He
Ross B. Girshick
Piotr Dollár
VLM
SSeg
35
1,076
0
21 Nov 2018
Domain Adaptive Transfer Learning with Specialist Models
Domain Adaptive Transfer Learning with Specialist Models
Jiquan Ngiam
Daiyi Peng
Vijay Vasudevan
Simon Kornblith
Quoc V. Le
Ruoming Pang
19
108
0
16 Nov 2018
GPipe: Efficient Training of Giant Neural Networks using Pipeline
  Parallelism
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
Yanping Huang
Yonglong Cheng
Ankur Bapna
Orhan Firat
Mia Xu Chen
...
HyoukJoong Lee
Jiquan Ngiam
Quoc V. Le
Yonghui Wu
Zhifeng Chen
GNN
MoE
19
7
0
16 Nov 2018
Learning data augmentation policies using augmented random search
Learning data augmentation policies using augmented random search
Mingyang Geng
Kele Xu
Bo Ding
Huaimin Wang
Lei Zhang
11
9
0
12 Nov 2018
Image Chat: Engaging Grounded Conversations
Image Chat: Engaging Grounded Conversations
Kurt Shuster
Samuel Humeau
Antoine Bordes
Jason Weston
23
115
0
02 Nov 2018
Engaging Image Captioning Via Personality
Engaging Image Captioning Via Personality
Kurt Shuster
Samuel Humeau
Hexiang Hu
Antoine Bordes
Jason Weston
18
149
0
25 Oct 2018
Deep Reinforcement Learning
Deep Reinforcement Learning
Yuxi Li
VLM
OffRL
23
144
0
15 Oct 2018
Learning to Interpret Satellite Images Using Wikipedia
Learning to Interpret Satellite Images Using Wikipedia
Evan Sheehan
Burak Uzkent
Chenlin Meng
Zhongyi Tang
Marshall Burke
David B. Lobell
Stefano Ermon
8
36
0
19 Sep 2018
On the Importance of Visual Context for Data Augmentation in Scene
  Understanding
On the Importance of Visual Context for Data Augmentation in Scene Understanding
Nikita Dvornik
Julien Mairal
Cordelia Schmid
24
84
0
06 Sep 2018
Improving Question Answering by Commonsense-Based Pre-Training
Improving Question Answering by Commonsense-Based Pre-Training
Wanjun Zhong
Duyu Tang
N. Duan
Ming Zhou
Jiahai Wang
Jian Yin
NAI
LRM
ReLM
16
62
0
05 Sep 2018
Emotion Recognition in Speech using Cross-Modal Transfer in the Wild
Emotion Recognition in Speech using Cross-Modal Transfer in the Wild
Samuel Albanie
Arsha Nagrani
Andrea Vedaldi
Andrew Zisserman
CVBM
22
270
0
16 Aug 2018
Fluid Annotation: A Human-Machine Collaboration Interface for Full Image
  Annotation
Fluid Annotation: A Human-Machine Collaboration Interface for Full Image Annotation
Mykhaylo Andriluka
J. Uijlings
V. Ferrari
VLM
24
81
0
20 Jun 2018
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance
  Benchmark
Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark
Cody Coleman
Daniel Kang
Deepak Narayanan
Luigi Nardi
Tian Zhao
Jian Zhang
Peter Bailis
K. Olukotun
Christopher Ré
Matei A. Zaharia
11
117
0
04 Jun 2018
AutoAugment: Learning Augmentation Policies from Data
AutoAugment: Learning Augmentation Policies from Data
E. D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
40
1,754
0
24 May 2018
Do Better ImageNet Models Transfer Better?
Do Better ImageNet Models Transfer Better?
Simon Kornblith
Jonathon Shlens
Quoc V. Le
OOD
MLT
50
1,308
0
23 May 2018
Value-aware Quantization for Training and Inference of Neural Networks
Value-aware Quantization for Training and Inference of Neural Networks
Eunhyeok Park
S. Yoo
Peter Vajda
MQ
4
157
0
20 Apr 2018
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
17
25,998
0
05 Sep 2017
Previous
123...151617