Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.03901
Cited By
Loss-Calibrated Approximate Inference in Bayesian Neural Networks
10 May 2018
Adam D. Cobb
Stephen J. Roberts
Y. Gal
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Loss-Calibrated Approximate Inference in Bayesian Neural Networks"
16 / 16 papers shown
Title
Making Reliable and Flexible Decisions in Long-tailed Classification
Bolian Li
Ruqi Zhang
233
0
0
23 Jan 2025
Amortized Bayesian Experimental Design for Decision-Making
Daolang Huang
Yujia Guo
Luigi Acerbi
Samuel Kaski
56
2
0
03 Jan 2025
Amortized Bayesian Decision Making for simulation-based models
Mila Gorecki
Jakob H. Macke
Michael Deistler
27
1
0
05 Dec 2023
Audio-based AI classifiers show no evidence of improved COVID-19 screening over simple symptoms checkers
H. Coppock
G. Nicholson
Ivan Kiskin
Vasiliki Koutra
Kieran Baker
...
Björn W. Schuller
D. Pigoli
S. Gilmour
Stephen J. Roberts
Chris Holmes
62
24
0
15 Dec 2022
On Calibrated Model Uncertainty in Deep Learning
Biraja Ghoshal
A. Tucker
UQCV
MedIm
27
10
0
15 Jun 2022
Loss-calibrated expectation propagation for approximate Bayesian decision-making
Michael J. Morais
Jonathan W. Pillow
49
6
0
10 Jan 2022
Post-hoc loss-calibration for Bayesian neural networks
Meet P. Vadera
S. Ghosh
Kenney Ng
Benjamin M. Marlin
UQCV
BDL
43
7
0
13 Jun 2021
Uncertainty Estimation in SARS-CoV-2 B-cell Epitope Prediction for Vaccine Development
Bhargab Ghoshal
Biraja Ghoshal
S. Swift
A. Tucker
22
3
0
20 Mar 2021
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
27
16
0
08 Jul 2020
Estimating Uncertainty and Interpretability in Deep Learning for Coronavirus (COVID-19) Detection
Biraja Ghoshal
A. Tucker
UQCV
OOD
24
378
0
22 Mar 2020
Introducing an Explicit Symplectic Integration Scheme for Riemannian Manifold Hamiltonian Monte Carlo
Adam D. Cobb
A. G. Baydin
Andrew Markham
Stephen J. Roberts
8
32
0
14 Oct 2019
Correcting Predictions for Approximate Bayesian Inference
Tomasz Kuśmierczyk
J. Sakaya
Arto Klami
21
10
0
11 Sep 2019
Galaxy Zoo: Probabilistic Morphology through Bayesian CNNs and Active Learning
Mike Walmsley
Lewis Smith
Chris J. Lintott
Y. Gal
S. Bamford
...
K. Masters
C. Scarlata
B. Simmons
R. Smethurst
D. Wright
35
86
0
17 May 2019
Embedded deep learning in ophthalmology: Making ophthalmic imaging smarter
Petteri Teikari
Raymond P. Najjar
L. Schmetterer
D. Milea
MedIm
27
27
0
13 Oct 2018
Taming the Cross Entropy Loss
Manuel Martínez
Rainer Stiefelhagen
NoLa
26
46
0
11 Oct 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,156
0
06 Jun 2015
1