Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.04049
Cited By
Exploiting Unintended Feature Leakage in Collaborative Learning
10 May 2018
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting Unintended Feature Leakage in Collaborative Learning"
50 / 630 papers shown
Title
AugMixCloak: A Defense against Membership Inference Attacks via Image Transformation
Heqing Ren
Chao Feng
Alberto Huertas
Burkhard Stiller
21
0
0
11 May 2025
Towards Trustworthy Federated Learning with Untrusted Participants
Youssef Allouah
R. Guerraoui
John Stephan
FedML
43
0
0
03 May 2025
PDSL: Privacy-Preserved Decentralized Stochastic Learning with Heterogeneous Data Distribution
Lina Wang
Yunsheng Yuan
Chunxiao Wang
Feng Li
FedML
43
0
0
31 Mar 2025
Defending Against Gradient Inversion Attacks for Biomedical Images via Learnable Data Perturbation
Shiyi Jiang
F. Firouzi
Krishnendu Chakrabarty
AAML
MedIm
41
0
0
19 Mar 2025
Differential Privacy Personalized Federated Learning Based on Dynamically Sparsified Client Updates
Chuanyin Wang
Yifei Zhang
Neng Gao
Qiang Luo
FedML
60
0
0
12 Mar 2025
All Your Knowledge Belongs to Us: Stealing Knowledge Graphs via Reasoning APIs
Zhaohan Xi
56
0
0
12 Mar 2025
From Centralized to Decentralized Federated Learning: Theoretical Insights, Privacy Preservation, and Robustness Challenges
Qiongxiu Li
Wenrui Yu
Yufei Xia
Jun Pang
FedML
50
1
0
10 Mar 2025
FedRand: Enhancing Privacy in Federated Learning with Randomized LoRA Subparameter Updates
Sangwoo Park
Seanie Lee
Byungjoo Kim
Sung Ju Hwang
FedML
42
0
0
10 Mar 2025
Trustworthy Machine Learning via Memorization and the Granular Long-Tail: A Survey on Interactions, Tradeoffs, and Beyond
Qiongxiu Li
Xiaoyu Luo
Yiyi Chen
Johannes Bjerva
43
0
0
10 Mar 2025
FedEM: A Privacy-Preserving Framework for Concurrent Utility Preservation in Federated Learning
Mingcong Xu
Xiaojin Zhang
Wei Chen
Hai Jin
FedML
43
0
0
08 Mar 2025
LiteChain: A Lightweight Blockchain for Verifiable and Scalable Federated Learning in Massive Edge Networks
Handi Chen
Rui Zhou
Yun-Hin Chan
Zhihan Jiang
Xianhao Chen
Edith C. H. Ngai
50
0
0
06 Mar 2025
Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems
Song Xia
Yi Yu
Wenhan Yang
Meiwen Ding
Zhuo Chen
Lingyu Duan
Alex C. Kot
Xudong Jiang
54
2
0
01 Mar 2025
Are Neuromorphic Architectures Inherently Privacy-preserving? An Exploratory Study
Ayana Moshruba
Ihsen Alouani
Maryam Parsa
AAML
46
3
0
24 Feb 2025
Guarding the Privacy of Label-Only Access to Neural Network Classifiers via iDP Verification
Anan Kabaha
Dana Drachsler-Cohen
AAML
43
0
0
23 Feb 2025
Beyond the Crawl: Unmasking Browser Fingerprinting in Real User Interactions
Meenatchi Sundaram Muthu Selva Annamalai
Igor Bilogrevic
Emiliano De Cristofaro
61
0
0
03 Feb 2025
FL-APU: A Software Architecture to Ease Practical Implementation of Cross-Silo Federated Learning
F. Stricker
J. A. Peregrina
D. Bermbach
C. Zirpins
FedML
74
0
0
31 Jan 2025
CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling
Kaiyuan Zhang
Siyuan Cheng
Guangyu Shen
Bruno Ribeiro
Shengwei An
Pin-Yu Chen
X. Zhang
Ninghui Li
90
1
0
28 Jan 2025
Fed-AugMix: Balancing Privacy and Utility via Data Augmentation
HaoYang Li
Wei Chen
Xiaojin Zhang
FedML
68
0
0
18 Dec 2024
Efficiently Achieving Secure Model Training and Secure Aggregation to Ensure Bidirectional Privacy-Preservation in Federated Learning
Xue Yang
Depan Peng
Yan Feng
Xiaohu Tang
Weijun Fang
Jun Shao
FedML
82
0
0
16 Dec 2024
Learning Robust and Privacy-Preserving Representations via Information Theory
Binghui Zhang
Sayedeh Leila Noorbakhsh
Yun Dong
Yuan Hong
Binghui Wang
64
0
0
15 Dec 2024
Membership Inference Attacks and Defenses in Federated Learning: A Survey
Li Bai
Haibo Hu
Qingqing Ye
Haoyang Li
Leixia Wang
Jianliang Xu
FedML
69
13
0
09 Dec 2024
BGTplanner: Maximizing Training Accuracy for Differentially Private Federated Recommenders via Strategic Privacy Budget Allocation
Xianzhi Zhang
Yipeng Zhou
Miao Hu
Di Wu
Pengshan Liao
Mohsen Guizani
Michael Sheng
62
0
0
04 Dec 2024
Privacy-Preserving Federated Learning via Homomorphic Adversarial Networks
Wenhan Dong
Chao Lin
Xinlei He
Xinyi Huang
Shengmin Xu
PICV
79
0
0
02 Dec 2024
Attribute Inference Attacks for Federated Regression Tasks
Francesco Diana
Othmane Marfoq
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
142
1
0
19 Nov 2024
How to Defend Against Large-scale Model Poisoning Attacks in Federated Learning: A Vertical Solution
Jinbo Wang
Ruijin Wang
Fengli Zhang
FedML
AAML
29
0
0
16 Nov 2024
TEESlice: Protecting Sensitive Neural Network Models in Trusted Execution Environments When Attackers have Pre-Trained Models
Ding Li
Ziqi Zhang
Mengyu Yao
Y. Cai
Yao Guo
Xiangqun Chen
FedML
32
2
0
15 Nov 2024
On Active Privacy Auditing in Supervised Fine-tuning for White-Box Language Models
Qian Sun
Hanpeng Wu
Xi Sheryl Zhang
36
0
0
11 Nov 2024
NeurIPS 2023 Competition: Privacy Preserving Federated Learning Document VQA
Marlon Tobaben
Mohamed Ali Souibgui
Rubèn Pérez Tito
Khanh Nguyen
Raouf Kerkouche
...
Josep Lladós
Ernest Valveny
Antti Honkela
Mario Fritz
Dimosthenis Karatzas
FedML
28
0
0
06 Nov 2024
Can Graph Neural Networks Expose Training Data Properties? An Efficient Risk Assessment Approach
Hanyang Yuan
Jiarong Xu
Renhong Huang
Mingli Song
Chunping Wang
Yang Yang
AAML
38
1
0
06 Nov 2024
Gradient-Guided Conditional Diffusion Models for Private Image Reconstruction: Analyzing Adversarial Impacts of Differential Privacy and Denoising
Tao Huang
Jiayang Meng
Hong Chen
Guolong Zheng
Xu Yang
Xun Yi
Hua Wang
DiffM
34
2
0
05 Nov 2024
Trustworthy Federated Learning: Privacy, Security, and Beyond
Chunlu Chen
Ji Liu
Haowen Tan
Xingjian Li
Kevin I-Kai Wang
Peng Li
Kouichi Sakurai
Dejing Dou
FedML
52
3
0
03 Nov 2024
Anomalous Client Detection in Federated Learning
Dipanwita Thakur
Antonella Guzzo
Giancarlo Fortino
FedML
30
0
0
03 Nov 2024
Trustworthiness of Stochastic Gradient Descent in Distributed Learning
Hongyang Li
Caesar Wu
Mohammed Chadli
Said Mammar
Pascal Bouvry
44
1
0
28 Oct 2024
FuseFL: One-Shot Federated Learning through the Lens of Causality with Progressive Model Fusion
Zhenheng Tang
Yonggang Zhang
Peijie Dong
Y. Cheung
Amelie Chi Zhou
Bo Han
Xiaowen Chu
FedML
MoMe
AI4CE
47
6
0
27 Oct 2024
Data Obfuscation through Latent Space Projection (LSP) for Privacy-Preserving AI Governance: Case Studies in Medical Diagnosis and Finance Fraud Detection
Mahesh Vaijainthymala Krishnamoorthy
16
0
0
22 Oct 2024
Acoustic Model Optimization over Multiple Data Sources: Merging and Valuation
Victor Junqiu Wei
Weicheng Wang
Di Jiang
Conghui Tan
Rongzhong Lian
MoMe
30
0
0
21 Oct 2024
Investigating Effective Speaker Property Privacy Protection in Federated Learning for Speech Emotion Recognition
Chao Tan
Sheng Li
Yang Cao
Zhao Ren
Tanja Schultz
30
0
0
17 Oct 2024
Uncovering Attacks and Defenses in Secure Aggregation for Federated Deep Learning
Yiwei Zhang
R. Behnia
A. Yavuz
Reza Ebrahimi
E. Bertino
FedML
11
2
0
13 Oct 2024
Edge AI Collaborative Learning: Bayesian Approaches to Uncertainty Estimation
Gleb I. Radchenko
Victoria Andrea Fill
26
0
0
11 Oct 2024
SoK: Towards Security and Safety of Edge AI
Tatjana Wingarz
Anne Lauscher
Janick Edinger
Dominik Kaaser
Stefan Schulte
Mathias Fischer
27
0
0
07 Oct 2024
Enhancing Security Using Random Binary Weights in Privacy-Preserving Federated Learning
Hiroto Sawada
Shoko Imaizumi
Hitoshi Kiya
FedML
AAML
23
0
0
30 Sep 2024
Subject Data Auditing via Source Inference Attack in Cross-Silo Federated Learning
Jiaxin Li
Marco Arazzi
Antonino Nocera
Mauro Conti
26
2
0
28 Sep 2024
Privacy Attack in Federated Learning is Not Easy: An Experimental Study
Hangyu Zhu
Liyuan Huang
Zhenping Xie
FedML
21
0
0
28 Sep 2024
Investigating Privacy Attacks in the Gray-Box Setting to Enhance Collaborative Learning Schemes
Federico Mazzone
Ahmad Al Badawi
Y. Polyakov
Maarten Everts
Florian Hahn
Andreas Peter
MIACV
AAML
31
0
0
25 Sep 2024
Perfect Gradient Inversion in Federated Learning: A New Paradigm from the Hidden Subset Sum Problem
Qiongxiu Li
Lixia Luo
Agnese Gini
Changlong Ji
Zhanhao Hu
Xiao-Li Li
Chengfang Fang
Jie Shi
Xiaolin Hu
FedML
24
3
0
21 Sep 2024
Data Poisoning and Leakage Analysis in Federated Learning
Wenqi Wei
Tiansheng Huang
Zachary Yahn
Anoop Singhal
Margaret Loper
Ling Liu
FedML
SILM
18
0
0
19 Sep 2024
From Challenges and Pitfalls to Recommendations and Opportunities: Implementing Federated Learning in Healthcare
Ming Li
Pengcheng Xu
Junjie Hu
Zeyu Tang
Guang Yang
FedML
40
1
0
15 Sep 2024
Balancing Security and Accuracy: A Novel Federated Learning Approach for Cyberattack Detection in Blockchain Networks
Tran Viet Khoa
Mohammad Abu Alsheikh
Yibeltal Alem
D. Hoang
FedML
24
3
0
08 Sep 2024
Understanding Data Importance in Machine Learning Attacks: Does Valuable Data Pose Greater Harm?
Rui Wen
Michael Backes
Yang Zhang
TDI
AAML
36
0
0
05 Sep 2024
Unveiling the Vulnerability of Private Fine-Tuning in Split-Based Frameworks for Large Language Models: A Bidirectionally Enhanced Attack
Guanzhong Chen
Zhenghan Qin
Mingxin Yang
Yajie Zhou
Tao Fan
Tianyu Du
Zenglin Xu
AAML
43
4
0
02 Sep 2024
1
2
3
4
...
11
12
13
Next