Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.04049
Cited By
Exploiting Unintended Feature Leakage in Collaborative Learning
10 May 2018
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploiting Unintended Feature Leakage in Collaborative Learning"
50 / 630 papers shown
Title
Rotation-Equivariant Neural Networks for Privacy Protection
Hao Zhang
Yiting Chen
Haotian Ma
Xu Cheng
Qihan Ren
Liyao Xiang
Jie Shi
Quanshi Zhang
13
3
0
21 Jun 2020
Rethinking Privacy Preserving Deep Learning: How to Evaluate and Thwart Privacy Attacks
Lixin Fan
Kam Woh Ng
Ce Ju
Tianyu Zhang
Chang Liu
Chee Seng Chan
Qiang Yang
MIACV
9
63
0
20 Jun 2020
Topology-aware Differential Privacy for Decentralized Image Classification
Shangwei Guo
Tianwei Zhang
Guowen Xu
Hanzhou Yu
Tao Xiang
Yang Liu
6
18
0
14 Jun 2020
Understanding Unintended Memorization in Federated Learning
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Franccoise Beaufays
FedML
11
45
0
12 Jun 2020
An Accurate, Scalable and Verifiable Protocol for Federated Differentially Private Averaging
C. Sabater
A. Bellet
J. Ramon
FedML
8
18
0
12 Jun 2020
Characterizing Impacts of Heterogeneity in Federated Learning upon Large-Scale Smartphone Data
Chengxu Yang
Qipeng Wang
Mengwei Xu
Shangguang Wang
Kaigui Bian
Yunxin Liu
Xuanzhe Liu
17
22
0
12 Jun 2020
Scalable Privacy-Preserving Distributed Learning
D. Froelicher
J. Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean-Pierre Hubaux
FedML
6
68
0
19 May 2020
Fair Inputs and Fair Outputs: The Incompatibility of Fairness in Privacy and Accuracy
Bashir Rastegarpanah
M. Crovella
Krishna P. Gummadi
FaML
8
8
0
19 May 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
19
83
0
18 May 2020
Efficient Federated Learning over Multiple Access Channel with Differential Privacy Constraints
Amir Sonee
Stefano Rini
6
16
0
15 May 2020
Defending Model Inversion and Membership Inference Attacks via Prediction Purification
Ziqi Yang
Bin Shao
Bohan Xuan
E. Chang
Fan Zhang
AAML
9
71
0
08 May 2020
When Machine Unlearning Jeopardizes Privacy
Min Chen
Zhikun Zhang
Tianhao Wang
Michael Backes
Mathias Humbert
Yang Zhang
MIACV
15
214
0
05 May 2020
Differentially Private Federated Learning with Laplacian Smoothing
Zhicong Liang
Bao Wang
Quanquan Gu
Stanley Osher
Yuan Yao
FedML
12
7
0
01 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
60
25
0
27 Apr 2020
Enhancing Privacy via Hierarchical Federated Learning
A. Wainakh
Alejandro Sánchez Guinea
Tim Grube
M. Mühlhäuser
FedML
12
45
0
23 Apr 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
10
146
0
22 Apr 2020
DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments
Fan Mo
Ali Shahin Shamsabadi
Kleomenis Katevas
Soteris Demetriou
Ilias Leontiadis
Andrea Cavallaro
Hamed Haddadi
FedML
8
175
0
12 Apr 2020
PrivEdge: From Local to Distributed Private Training and Prediction
Ali Shahin Shamsabadi
Adria Gascon
Hamed Haddadi
Andrea Cavallaro
18
19
0
12 Apr 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
52
50
0
01 Apr 2020
Information Leakage in Embedding Models
Congzheng Song
A. Raghunathan
MIACV
16
260
0
31 Mar 2020
Inverting Gradients -- How easy is it to break privacy in federated learning?
Jonas Geiping
Hartmut Bauermeister
Hannah Dröge
Michael Moeller
FedML
9
1,192
0
31 Mar 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
187
358
0
24 Mar 2020
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
171
324
0
19 Mar 2020
Can We Use Split Learning on 1D CNN Models for Privacy Preserving Training?
Sharif Abuadbba
Kyuyeon Kim
Minki Kim
Chandra Thapa
S. Çamtepe
Yansong Gao
Hyoungshick Kim
Surya Nepal
FedML
6
122
0
16 Mar 2020
Dynamic Backdoor Attacks Against Machine Learning Models
A. Salem
Rui Wen
Michael Backes
Shiqing Ma
Yang Zhang
AAML
16
269
0
07 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
191
433
0
04 Mar 2020
User-Level Privacy-Preserving Federated Learning: Analysis and Performance Optimization
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Hang Su
Bo-Wen Zhang
H. Vincent Poor
FedML
19
11
0
29 Feb 2020
PrivacyFL: A simulator for privacy-preserving and secure federated learning
Vaikkunth Mugunthan
Anton Peraire-Bueno
Lalana Kagal
FedML
6
57
0
19 Feb 2020
Wireless Federated Learning with Local Differential Privacy
Mohamed Seif
Ravi Tandon
Ming Li
68
171
0
12 Feb 2020
Salvaging Federated Learning by Local Adaptation
Tao Yu
Eugene Bagdasaryan
Vitaly Shmatikov
FedML
6
260
0
12 Feb 2020
On the Convergence of Artificial Intelligence and Distributed Ledger Technology: A Scoping Review and Future Research Agenda
Konstantin D. Pandl
Scott Thiebes
Manuel Schmidt-Kraepelin
A. Sunyaev
22
69
0
29 Jan 2020
Privacy for All: Demystify Vulnerability Disparity of Differential Privacy against Membership Inference Attack
Bo Zhang
Ruotong Yu
Haipei Sun
Yanying Li
Jun Xu
Wendy Hui Wang
AAML
6
13
0
24 Jan 2020
iDLG: Improved Deep Leakage from Gradients
Bo-Lu Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
15
622
0
08 Jan 2020
Attack-Resistant Federated Learning with Residual-based Reweighting
Shuhao Fu
Chulin Xie
Bo-wen Li
Qifeng Chen
FedML
AAML
22
93
0
24 Dec 2019
Cronus: Robust and Heterogeneous Collaborative Learning with Black-Box Knowledge Transfer
Hong Chang
Virat Shejwalkar
Reza Shokri
Amir Houmansadr
FedML
10
167
0
24 Dec 2019
Learning to Prevent Leakage: Privacy-Preserving Inference in the Mobile Cloud
Shuang Zhang
Liyao Xiang
Congcong Li
Yixuan Wang
Quanshi Zhang
Zeyu Liu
Bo-wen Li
FedML
8
1
0
18 Dec 2019
Asynchronous Federated Learning with Differential Privacy for Edge Intelligence
Yanan Li
Shusen Yang
Xuebin Ren
Cong Zhao
FedML
14
33
0
17 Dec 2019
Efficient Per-Example Gradient Computations in Convolutional Neural Networks
G. Rochette
Andre Manoel
Eric W. Tramel
6
19
0
12 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
57
6,057
0
10 Dec 2019
Local Model Poisoning Attacks to Byzantine-Robust Federated Learning
Minghong Fang
Xiaoyu Cao
Jinyuan Jia
Neil Zhenqiang Gong
AAML
OOD
FedML
26
1,069
0
26 Nov 2019
Effects of Differential Privacy and Data Skewness on Membership Inference Vulnerability
Stacey Truex
Ling Liu
Mehmet Emre Gursoy
Wenqi Wei
Lei Yu
MIACV
19
46
0
21 Nov 2019
Theoretical Guarantees for Model Auditing with Finite Adversaries
Mario Díaz
Peter Kairouz
Jiachun Liao
Lalitha Sankar
MLAU
AAML
18
2
0
08 Nov 2019
Secure Federated Submodel Learning
Chaoyue Niu
Fan Wu
Shaojie Tang
Lifeng Hua
Rongfei Jia
Chengfei Lv
Zhihua Wu
Guihai Chen
FedML
6
30
0
06 Nov 2019
RIGA: Covert and Robust White-Box Watermarking of Deep Neural Networks
Tianhao Wang
Florian Kerschbaum
AAML
11
36
0
31 Oct 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
14
53
0
21 Oct 2019
Eavesdrop the Composition Proportion of Training Labels in Federated Learning
Lixu Wang
Shichao Xu
Xiao Wang
Qi Zhu
FedML
12
62
0
14 Oct 2019
A blockchain-orchestrated Federated Learning architecture for healthcare consortia
Jonathan Passerat-Palmbach
Tyler Farnan
Robert C Miller
M. Gross
H. Flannery
Bill Gleim
FedML
6
54
0
12 Oct 2019
Quantification of the Leakage in Federated Learning
Zhaorui Li
Zhicong Huang
Chaochao Chen
Cheng Hong
FedML
PILM
8
22
0
12 Oct 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
17
964
0
04 Oct 2019
GAMIN: An Adversarial Approach to Black-Box Model Inversion
Ulrich Aivodji
Sébastien Gambs
Timon Ther
MLAU
17
42
0
26 Sep 2019
Previous
1
2
3
...
11
12
13
Next