ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.07206
  4. Cited By
Approximate Bayesian inference in spatial environments
v1v2v3 (latest)

Approximate Bayesian inference in spatial environments

18 May 2018
Atanas Mirchev
Baris Kayalibay
Maximilian Soelch
Patrick van der Smagt
Justin Bayer
    BDL
ArXiv (abs)PDFHTML

Papers citing "Approximate Bayesian inference in spatial environments"

14 / 14 papers shown
Title
The Role of Predictive Uncertainty and Diversity in Embodied AI and
  Robot Learning
The Role of Predictive Uncertainty and Diversity in Embodied AI and Robot Learning
Ransalu Senanayake
155
11
0
06 May 2024
PRISM: Probabilistic Real-Time Inference in Spatial World Models
PRISM: Probabilistic Real-Time Inference in Spatial World ModelsConference on Robot Learning (CoRL), 2022
Atanas Mirchev
Baris Kayalibay
Ahmed Agha
Patrick van der Smagt
Zorah Lähner
Justin Bayer
VGen
110
0
0
06 Dec 2022
Tracking and Planning with Spatial World Models
Tracking and Planning with Spatial World ModelsConference on Learning for Dynamics & Control (L4DC), 2022
Baris Kayalibay
Atanas Mirchev
Patrick van der Smagt
Justin Bayer
116
4
0
25 Jan 2022
Information is Power: Intrinsic Control via Information Capture
Information is Power: Intrinsic Control via Information Capture
Nick Rhinehart
Jenny Wang
Glen Berseth
John D. Co-Reyes
Danijar Hafner
Chelsea Finn
Sergey Levine
101
10
0
07 Dec 2021
Applications of the Free Energy Principle to Machine Learning and
  Neuroscience
Applications of the Free Energy Principle to Machine Learning and Neuroscience
Beren Millidge
DRL
224
10
0
30 Jun 2021
Rapid Exploration for Open-World Navigation with Latent Goal Models
Rapid Exploration for Open-World Navigation with Latent Goal ModelsConference on Robot Learning (CoRL), 2021
Dhruv Shah
Benjamin Eysenbach
G. Kahn
Nicholas Rhinehart
Sergey Levine
292
101
0
12 Apr 2021
Clockwork Variational Autoencoders
Clockwork Variational AutoencodersNeural Information Processing Systems (NeurIPS), 2021
Vaibhav Saxena
Jimmy Ba
Danijar Hafner
VGenDRL
134
51
0
18 Feb 2021
Mind the Gap when Conditioning Amortised Inference in Sequential
  Latent-Variable Models
Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable ModelsInternational Conference on Learning Representations (ICLR), 2021
Justin Bayer
Maximilian Soelch
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
174
16
0
18 Jan 2021
Evaluating Agents without Rewards
Evaluating Agents without Rewards
Brendon Matusch Jimmy Ba
Jimmy Ba
Danijar Hafner
128
13
0
21 Dec 2020
Action and Perception as Divergence Minimization
Action and Perception as Divergence Minimization
Danijar Hafner
Pedro A. Ortega
Jimmy Ba
Thomas Parr
Karl J. Friston
N. Heess
136
57
0
03 Sep 2020
Variational State-Space Models for Localisation and Dense 3D Mapping in
  6 DoF
Variational State-Space Models for Localisation and Dense 3D Mapping in 6 DoF
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
Justin Bayer
BDLDRL
126
11
0
17 Jun 2020
Reinforcement Learning through Active Inference
Reinforcement Learning through Active Inference
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
AI4CE
161
83
0
28 Feb 2020
Learning to Move with Affordance Maps
Learning to Move with Affordance MapsInternational Conference on Learning Representations (ICLR), 2020
William Qi
Ravi Teja Mullapudi
Saurabh Gupta
Deva Ramanan
123
37
0
08 Jan 2020
Scaling active inference
Scaling active inferenceIEEE International Joint Conference on Neural Network (IJCNN), 2019
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDLAI4CE
119
72
0
24 Nov 2019
1