Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.08095
Cited By
Small steps and giant leaps: Minimal Newton solvers for Deep Learning
21 May 2018
João F. Henriques
Sébastien Ehrhardt
Samuel Albanie
Andrea Vedaldi
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Small steps and giant leaps: Minimal Newton solvers for Deep Learning"
8 / 8 papers shown
Title
Statistical and Computational Guarantees for Influence Diagnostics
Jillian R. Fisher
Lang Liu
Krishna Pillutla
Y. Choi
Zaïd Harchaoui
TDI
54
0
0
08 Dec 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
64
4
0
29 Jan 2022
KOALA: A Kalman Optimization Algorithm with Loss Adaptivity
A. Davtyan
Sepehr Sameni
L. Cerkezi
Givi Meishvili
Adam Bielski
Paolo Favaro
ODL
158
3
0
07 Jul 2021
Descending through a Crowded Valley - Benchmarking Deep Learning Optimizers
Robin M. Schmidt
Frank Schneider
Philipp Hennig
ODL
202
168
0
03 Jul 2020
Sketchy Empirical Natural Gradient Methods for Deep Learning
Minghan Yang
Dong Xu
Zaiwen Wen
Mengyun Chen
Pengxiang Xu
27
13
0
10 Jun 2020
Deep Neural Network Learning with Second-Order Optimizers -- a Practical Study with a Stochastic Quasi-Gauss-Newton Method
C. Thiele
Mauricio Araya-Polo
D. Hohl
ODL
21
2
0
06 Apr 2020
Training Neural Networks for and by Interpolation
Leonard Berrada
Andrew Zisserman
M. P. Kumar
3DH
74
63
0
13 Jun 2019
An Adaptive Remote Stochastic Gradient Method for Training Neural Networks
Yushu Chen
Hao Jing
Wenlai Zhao
Zhiqiang Liu
Haohuan Fu
Lián Qiao
Wei Xue
Guangwen Yang
ODL
49
2
0
04 May 2019
1