Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.08308
Cited By
geomstats: a Python Package for Riemannian Geometry in Machine Learning
21 May 2018
Nina Miolane
Johan Mathe
Claire Donnat
Mikael Jorda
Xavier Pennec
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"geomstats: a Python Package for Riemannian Geometry in Machine Learning"
50 / 58 papers shown
Title
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
41
0
0
26 Apr 2025
Robust Estimation in metric spaces: Achieving Exponential Concentration with a Fréchet Median
Jakwang Kim
Jiyoung Park
Anirban Bhattacharya
30
0
0
19 Apr 2025
Riemann
2
^2
2
: Learning Riemannian Submanifolds from Riemannian Data
Leonel Rozo
Miguel González-Duque
Noémie Jaquier
Søren Hauberg
52
1
0
07 Mar 2025
Approximation and bounding techniques for the Fisher-Rao distances between parametric statistical models
Frank Nielsen
43
3
0
08 Jan 2025
Fused Gromov-Wasserstein Variance Decomposition with Linear Optimal Transport
Michael Wilson
Tom Needham
A. Srivastava
OT
29
0
0
15 Nov 2024
BlackDAN: A Black-Box Multi-Objective Approach for Effective and Contextual Jailbreaking of Large Language Models
Xinyuan Wang
Victor Shea-Jay Huang
Renmiao Chen
Hao Wang
C. Pan
Lei Sha
Minlie Huang
AAML
23
2
0
13 Oct 2024
Bounds on the geodesic distances on the Stiefel manifold for a family of Riemannian metrics
Simon Mataigne
P.-A. Absil
Nina Miolane
OT
13
2
0
25 Jul 2024
Regularized estimation of Monge-Kantorovich quantiles for spherical data
Bernard Bercu
Jérémie Bigot
Gauthier Thurin
OT
31
1
0
02 Jul 2024
Learning from landmarks, curves, surfaces, and shapes in Geomstats
Luís F. Pereira
Alice Le Brigant
Adele Myers
Emmanuel Hartman
Amil Khan
Malik Tuerkoen
Trey Dold
Mengyang Gu
Pablo Suárez-Serrato
Nina Miolane
AI4CE
27
0
0
14 Jun 2024
Symmetry Discovery Beyond Affine Transformations
Ben Shaw
A. Magner
Kevin R. Moon
35
1
0
05 Jun 2024
A Metric-based Principal Curve Approach for Learning One-dimensional Manifold
E. Cui
16
0
0
20 May 2024
Polynomial Chaos Expansions on Principal Geodesic Grassmannian Submanifolds for Surrogate Modeling and Uncertainty Quantification
Dimitris G. Giovanis
Dimitrios Loukrezis
Ioannis G. Kevrekidis
Michael D. Shields
17
3
0
30 Jan 2024
Learning Distributions on Manifolds with Free-form Flows
Peter Sorrenson
Felix Dräxler
Armand Rousselot
Sander Hummerich
Ullrich Kothe
DRL
AI4CE
24
2
0
15 Dec 2023
Fast hyperboloid decision tree algorithms
Philippe Chlenski
Ethan Turok
A. Moretti
I. Pe’er
16
4
0
20 Oct 2023
Geodesic Regression Characterizes 3D Shape Changes in the Female Brain During Menstruation
Adele Myers
Caitlin Taylor
Zhehui Huang
Gaurav Sukhatme
3DH
19
2
0
28 Sep 2023
A survey of manifold learning and its applications for multimedia
Hannes Fassold
34
1
0
08 Sep 2023
Capacity Bounds for Hyperbolic Neural Network Representations of Latent Tree Structures
Anastasis Kratsios
Rui Hong
Haitz Sáez de Ocáriz Borde
19
4
0
18 Aug 2023
Geometric Neural Diffusion Processes
Emile Mathieu
Vincent Dutordoir
M. Hutchinson
Valentin De Bortoli
Yee Whye Teh
Richard E. Turner
DiffM
32
8
0
11 Jul 2023
Principal subbundles for dimension reduction
M. Akhøj
J. Benn
E. Grong
Stefan Sommer
Xavier Pennec
36
1
0
06 Jul 2023
Geometric Autoencoders -- What You See is What You Decode
Philipp Nazari
Sebastian Damrich
Fred Hamprecht
22
12
0
30 Jun 2023
HypLL: The Hyperbolic Learning Library
Max van Spengler
Philipp Wirth
Pascal Mettes
AI4CE
11
5
0
09 Jun 2023
Embedded Feature Similarity Optimization with Specific Parameter Initialization for 2D/3D Medical Image Registration
Minheng Chen
Zhirun Zhang
Shuheng Gu
Youyong Kong
25
4
0
10 May 2023
Differential geometry with extreme eigenvalues in the positive semidefinite cone
Cyrus Mostajeran
Nathael Da Costa
Graham W. Van Goffrier
R. Sepulchre
14
4
0
14 Apr 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
12
6
0
16 Feb 2023
Neural networks learn to magnify areas near decision boundaries
Jacob A. Zavatone-Veth
Sheng Yang
Julian Rubinfien
C. Pehlevan
MLT
AI4CE
20
6
0
26 Jan 2023
Geometric path augmentation for inference of sparsely observed stochastic nonlinear systems
Dimitra Maoutsa
22
1
0
19 Jan 2023
Fréchet Mean Set Estimation in the Hausdorff Metric, via Relaxation
Moise Blanchard
Adam Quinn Jaffe
11
3
0
22 Dec 2022
Parametric information geometry with the package Geomstats
Alice Le Brigant
Jules Deschamps
Antoine Collas
Nina Miolane
12
4
0
21 Nov 2022
k
k
k
-Means Clustering for Persistent Homology
Yueqi Cao
P. Leung
Anthea Monod
8
3
0
18 Oct 2022
Rieoptax: Riemannian Optimization in JAX
Saiteja Utpala
Andi Han
Pratik Jawanpuria
Bamdev Mishra
16
3
0
10 Oct 2022
Regression-Based Elastic Metric Learning on Shape Spaces of Elastic Curves
Adele Myers
Nina Miolane
15
3
0
04 Oct 2022
NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning
Buyun Liang
Tim Mitchell
Ju Sun
OOD
6
7
0
03 Oct 2022
Small Transformers Compute Universal Metric Embeddings
Anastasis Kratsios
Valentin Debarnot
Ivan Dokmanić
54
11
0
14 Sep 2022
Differentially Private Fréchet Mean on the Manifold of Symmetric Positive Definite (SPD) Matrices with log-Euclidean Metric
Saiteja Utpala
Praneeth Vepakomma
Nina Miolane
14
7
0
08 Aug 2022
Geometric Learning of Hidden Markov Models via a Method of Moments Algorithm
Berlin Chen
Cyrus Mostajeran
Salem Said
11
2
0
02 Jul 2022
Neural Networks as Paths through the Space of Representations
Richard D. Lange
Devin Kwok
Jordan K Matelsky
Xinyue Wang
David Rolnick
Konrad Paul Kording
27
4
0
22 Jun 2022
Riemannian data-dependent randomized smoothing for neural networks certification
Pol Labarbarie
H. Hajri
M. Arnaudon
23
4
0
21 Jun 2022
Near out-of-distribution detection for low-resolution radar micro-Doppler signatures
Martin Bauw
Santiago Velasco-Forero
Jesús Angulo
C. Adnet
O. Airiau
OODD
19
5
0
12 May 2022
Universal Prototype Transport for Zero-Shot Action Recognition and Localization
Pascal Mettes
14
5
0
08 Mar 2022
Riemannian Score-Based Generative Modelling
Valentin De Bortoli
Emile Mathieu
M. Hutchinson
James Thornton
Yee Whye Teh
Arnaud Doucet
DiffM
217
164
0
06 Feb 2022
Riemannian Functional Map Synchronization for Probabilistic Partial Correspondence in Shape Networks
Faria Huq
Adrish Dey
Sahra Yusuf
Dena Bazazian
Tolga Birdal
Nina Miolane
28
1
0
29 Nov 2021
NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning
Buyun Liang
Tim Mitchell
Ju Sun
15
3
0
27 Nov 2021
GeomNet: A Neural Network Based on Riemannian Geometries of SPD Matrix Space and Cholesky Space for 3D Skeleton-Based Interaction Recognition
X. Nguyen
3DH
17
33
0
25 Nov 2021
Generalized Shape Metrics on Neural Representations
Alex H. Williams
Erin M Kunz
Simon Kornblith
Scott W. Linderman
MedIm
4
93
0
27 Oct 2021
Universal Approximation Under Constraints is Possible with Transformers
Anastasis Kratsios
Behnoosh Zamanlooy
Tianlin Liu
Ivan Dokmanić
51
26
0
07 Oct 2021
Non-Euclidean Analysis of Joint Variations in Multi-Object Shapes
Zhiyuan Liu
Jörn Schulz
Mohsen Taheri
Martin Styner
James Damon
Stephen M. Pizer
J. S. Marron
10
0
0
06 Sep 2021
TensorFlow RiemOpt: a library for optimization on Riemannian manifolds
O. Smirnov
8
7
0
27 May 2021
Riemannian Geometry with differentiable ambient space and metric operator
Du Nguyen
13
1
0
04 May 2021
Closed-form geodesics and trust-region method to calculate Riemannian logarithms on Stiefel and its quotient manifolds
Du Nguyen
23
14
0
12 Mar 2021
Limit Theorems for Fréchet Mean Sets
S. Evans
Adam Quinn Jaffe
19
5
0
23 Dec 2020
1
2
Next