Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.08308
Cited By
geomstats: a Python Package for Riemannian Geometry in Machine Learning
21 May 2018
Nina Miolane
Johan Mathe
Claire Donnat
Mikael Jorda
Xavier Pennec
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"geomstats: a Python Package for Riemannian Geometry in Machine Learning"
8 / 58 papers shown
Title
Operator-valued formulas for Riemannian Gradient and Hessian and families of tractable metrics
Du Nguyen
6
5
0
21 Sep 2020
Exponential-wrapped distributions on symmetric spaces
Emmanuel Chevallier
Didong Li
Yulong Lu
David B. Dunson
9
8
0
04 Sep 2020
Geoopt: Riemannian Optimization in PyTorch
Max Kochurov
R. Karimov
Sergei Kozlukov
14
114
0
06 May 2020
Generalizing Spatial Transformers to Projective Geometry with Applications to 2D/3D Registration
Cong Gao
Xingtong Liu
Wenhao Gu
Benjamin Killeen
Mehran Armand
Russell H. Taylor
Mathias Unberath
ViT
MedIm
9
47
0
24 Mar 2020
Escaping from saddle points on Riemannian manifolds
Yue Sun
Nicolas Flammarion
Maryam Fazel
23
71
0
18 Jun 2019
Computing CNN Loss and Gradients for Pose Estimation with Riemannian Geometry
Benjamin Hou
Nina Miolane
Bishesh Khanal
M. J. Lee
A. Alansary
Steven G. McDonagh
Joseph V. Hajnal
Daniel Rueckert
Ben Glocker
Bernhard Kainz
MedIm
9
29
0
02 May 2018
Differential geometry and stochastic dynamics with deep learning numerics
Line Kühnel
Alexis Arnaudon
Stefan Sommer
AI4CE
16
25
0
22 Dec 2017
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
238
3,236
0
24 Nov 2016
Previous
1
2