ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.10522
  4. Cited By
Calibrating Deep Convolutional Gaussian Processes

Calibrating Deep Convolutional Gaussian Processes

26 May 2018
Gia-Lac Tran
Edwin V. Bonilla
John P. Cunningham
Pietro Michiardi
Maurizio Filippone
    BDLUQCV
ArXiv (abs)PDFHTML

Papers citing "Calibrating Deep Convolutional Gaussian Processes"

18 / 18 papers shown
Title
Spectral Representations for Accurate Causal Uncertainty Quantification
  with Gaussian Processes
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
56
1
0
18 Oct 2024
Modular Conformal Calibration
Modular Conformal Calibration
Charles Marx
Shengjia Zhao
Willie Neiswanger
Stefano Ermon
57
16
0
23 Jun 2022
Federated Bayesian Neural Regression: A Scalable Global Federated
  Gaussian Process
Federated Bayesian Neural Regression: A Scalable Global Federated Gaussian Process
Hao Yu
Kaiyang Guo
Mahdi Karami
Xi Chen
Guojun Zhang
Pascal Poupart
FedML
89
3
0
13 Jun 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCVBDL
228
51
0
01 May 2022
Unsupervised Restoration of Weather-affected Images using Deep Gaussian
  Process-based CycleGAN
Unsupervised Restoration of Weather-affected Images using Deep Gaussian Process-based CycleGAN
R. Yasarla
Vishwanath A. Sindagi
Vishal M. Patel
135
2
0
23 Apr 2022
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCVBDL
82
109
0
24 Feb 2021
Should Ensemble Members Be Calibrated?
Should Ensemble Members Be Calibrated?
Xixin Wu
Mark Gales
UQCV
51
12
0
13 Jan 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
353
1,945
0
12 Nov 2020
Local Temperature Scaling for Probability Calibration
Local Temperature Scaling for Probability Calibration
Zhipeng Ding
Xu Han
Peirong Liu
Marc Niethammer
116
81
0
12 Aug 2020
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
Aleksandr Podkopaev
Aaditya Ramdas
UQCV
117
83
0
18 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCVBDL
284
452
0
17 Jun 2020
Deep Latent-Variable Kernel Learning
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
59
8
0
18 May 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
106
227
0
16 Mar 2020
Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural
  Networks
Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural Networks
Juan Maroñas
Roberto Paredes Palacios
D. Ramos-Castro
UQCVBDL
90
24
0
23 Aug 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
99
16
0
27 May 2019
Evaluating model calibration in classification
Evaluating model calibration in classification
Juozas Vaicenavicius
David Widmann
Carl R. Andersson
Fredrik Lindsten
Jacob Roll
Thomas B. Schon
UQCV
161
200
0
19 Feb 2019
Deep convolutional Gaussian processes
Deep convolutional Gaussian processes
Kenneth Blomqvist
Samuel Kaski
Markus Heinonen
BDL
86
61
0
06 Oct 2018
Deep Gaussian Processes with Convolutional Kernels
Deep Gaussian Processes with Convolutional Kernels
Vinayak Kumar
Vaibhav Singh
P. K. Srijith
Andreas C. Damianou
BDLGP
99
30
0
05 Jun 2018
1