Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.10692
Cited By
Compact and Computationally Efficient Representation of Deep Neural Networks
27 May 2018
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Compact and Computationally Efficient Representation of Deep Neural Networks"
11 / 11 papers shown
Title
Efficient Adaptive Federated Optimization of Federated Learning for IoT
Zunming Chen
Hongyan Cui
Ensen Wu
Yu Xi
27
0
0
23 Jun 2022
Compacting Deep Neural Networks for Internet of Things: Methods and Applications
Ke Zhang
Hanbo Ying
Hongning Dai
Lin Li
Yuangyuang Peng
Keyi Guo
Hongfang Yu
16
38
0
20 Mar 2021
FantastIC4: A Hardware-Software Co-Design Approach for Efficiently Running 4bit-Compact Multilayer Perceptrons
Simon Wiedemann
Suhas Shivapakash
P. Wiedemann
Daniel Becking
Wojciech Samek
F. Gerfers
Thomas Wiegand
MQ
16
7
0
17 Dec 2020
Progressive Graph Convolutional Networks for Semi-Supervised Node Classification
Negar Heidari
Alexandros Iosifidis
GNN
16
14
0
27 Mar 2020
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
40
965
0
04 Oct 2019
DeepCABAC: A Universal Compression Algorithm for Deep Neural Networks
Simon Wiedemann
H. Kirchhoffer
Stefan Matlage
Paul Haase
Arturo Marbán
...
Ahmed Osman
D. Marpe
H. Schwarz
Thomas Wiegand
Wojciech Samek
41
92
0
27 Jul 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
16
1,329
0
07 Mar 2019
Multi-Kernel Prediction Networks for Denoising of Burst Images
Talmaj Marinc
Vignesh Srinivasan
Serhan Gül
C. Hellge
Wojciech Samek
20
26
0
05 Feb 2019
Sparse Binary Compression: Towards Distributed Deep Learning with minimal Communication
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
MQ
11
210
0
22 May 2018
Universal Deep Neural Network Compression
Yoojin Choi
Mostafa El-Khamy
Jungwon Lee
MQ
81
85
0
07 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1