ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.12244
  4. Cited By
Mining gold from implicit models to improve likelihood-free inference

Mining gold from implicit models to improve likelihood-free inference

30 May 2018
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
    AI4CE
    TPM
ArXivPDFHTML

Papers citing "Mining gold from implicit models to improve likelihood-free inference"

20 / 20 papers shown
Title
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Sanghwan Bae
Jiwoo Hong
Min Young Lee
Hanbyul Kim
Jeongyeon Nam
Donghyun Kwak
OffRL
LRM
48
3
0
04 Apr 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
108
2
0
17 Jan 2025
Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods
Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods
Julia Walchessen
Amanda Lenzi
Mikael Kuusela
30
9
0
31 Dec 2024
Full-waveform earthquake source inversion using simulation-based inference
Full-waveform earthquake source inversion using simulation-based inference
A. A. Saoulis
Davide Piras
A. Spurio Mancini
B. Joachimi
A. M. G. Ferreira
35
0
0
30 Oct 2024
FAIR Universe HiggsML Uncertainty Challenge Competition
FAIR Universe HiggsML Uncertainty Challenge Competition
W. Bhimji
P. Calafiura
Ragansu Chakkappai
Yuan-Tang Chou
S. Diefenbacher
...
D. Rousseau
Benjamin Sluijter
Benjamin Thorne
Ihsan Ullah
Yulei Zhang
27
1
0
03 Oct 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Burkner
50
3
0
23 Aug 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with
  Intractable Likelihoods
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
16
0
0
30 Jan 2024
Interpretable Uncertainty Quantification in AI for HEP
Interpretable Uncertainty Quantification in AI for HEP
Thomas Y. Chen
B. Dey
A. Ghosh
Michael Kagan
Brian D. Nord
Nesar Ramachandra
19
7
0
05 Aug 2022
Accelerated Bayesian SED Modeling using Amortized Neural Posterior
  Estimation
Accelerated Bayesian SED Modeling using Amortized Neural Posterior Estimation
C. Hahn
Peter Melchior
11
28
0
14 Mar 2022
Differentiable Matrix Elements with MadJax
Differentiable Matrix Elements with MadJax
Lukas Heinrich
Michael Kagan
12
19
0
28 Feb 2022
Machine Learning in the Search for New Fundamental Physics
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
26
113
0
07 Dec 2021
Group equivariant neural posterior estimation
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
31
31
0
25 Nov 2021
Unifying Likelihood-free Inference with Black-box Optimization and
  Beyond
Unifying Likelihood-free Inference with Black-box Optimization and Beyond
Dinghuai Zhang
Jie Fu
Yoshua Bengio
Aaron Courville
29
13
0
06 Oct 2021
A Cautionary Tale of Decorrelating Theory Uncertainties
A Cautionary Tale of Decorrelating Theory Uncertainties
A. Ghosh
Benjamin Nachman
15
17
0
16 Sep 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
16
33
0
18 Jan 2021
Towards constraining warm dark matter with stellar streams through
  neural simulation-based inference
Towards constraining warm dark matter with stellar streams through neural simulation-based inference
Joeri Hermans
N. Banik
Christoph Weniger
G. Bertone
Gilles Louppe
25
29
0
30 Nov 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
34
117
0
10 Feb 2020
Effective LHC measurements with matrix elements and machine learning
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
12
14
0
04 Jun 2019
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
33
358
0
18 May 2018
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
225
2,543
0
25 Jan 2016
1