Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1805.12244
Cited By
Mining gold from implicit models to improve likelihood-free inference
30 May 2018
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mining gold from implicit models to improve likelihood-free inference"
20 / 20 papers shown
Title
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Sanghwan Bae
Jiwoo Hong
Min Young Lee
Hanbyul Kim
Jeongyeon Nam
Donghyun Kwak
OffRL
LRM
48
3
0
04 Apr 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
108
2
0
17 Jan 2025
Neural Likelihood Surfaces for Spatial Processes with Computationally Intensive or Intractable Likelihoods
Julia Walchessen
Amanda Lenzi
Mikael Kuusela
30
9
0
31 Dec 2024
Full-waveform earthquake source inversion using simulation-based inference
A. A. Saoulis
Davide Piras
A. Spurio Mancini
B. Joachimi
A. M. G. Ferreira
35
0
0
30 Oct 2024
FAIR Universe HiggsML Uncertainty Challenge Competition
W. Bhimji
P. Calafiura
Ragansu Chakkappai
Yuan-Tang Chou
S. Diefenbacher
...
D. Rousseau
Benjamin Sluijter
Benjamin Thorne
Ihsan Ullah
Yulei Zhang
27
1
0
03 Oct 2024
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Burkner
50
3
0
23 Aug 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
16
0
0
30 Jan 2024
Interpretable Uncertainty Quantification in AI for HEP
Thomas Y. Chen
B. Dey
A. Ghosh
Michael Kagan
Brian D. Nord
Nesar Ramachandra
19
7
0
05 Aug 2022
Accelerated Bayesian SED Modeling using Amortized Neural Posterior Estimation
C. Hahn
Peter Melchior
11
28
0
14 Mar 2022
Differentiable Matrix Elements with MadJax
Lukas Heinrich
Michael Kagan
12
19
0
28 Feb 2022
Machine Learning in the Search for New Fundamental Physics
G. Karagiorgi
Gregor Kasieczka
S. Kravitz
Benjamin Nachman
David Shih
AI4CE
26
113
0
07 Dec 2021
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
31
31
0
25 Nov 2021
Unifying Likelihood-free Inference with Black-box Optimization and Beyond
Dinghuai Zhang
Jie Fu
Yoshua Bengio
Aaron Courville
29
13
0
06 Oct 2021
A Cautionary Tale of Decorrelating Theory Uncertainties
A. Ghosh
Benjamin Nachman
15
17
0
16 Sep 2021
E Pluribus Unum Ex Machina: Learning from Many Collider Events at Once
Benjamin Nachman
Jesse Thaler
16
33
0
18 Jan 2021
Towards constraining warm dark matter with stellar streams through neural simulation-based inference
Joeri Hermans
N. Banik
Christoph Weniger
G. Bertone
Gilles Louppe
25
29
0
30 Nov 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
34
117
0
10 Feb 2020
Effective LHC measurements with matrix elements and machine learning
Johann Brehmer
Kyle Cranmer
Irina Espejo
F. Kling
Gilles Louppe
J. Pavez
12
14
0
04 Jun 2019
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
33
358
0
18 May 2018
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
225
2,543
0
25 Jan 2016
1