ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01242
  4. Cited By
Graph networks as learnable physics engines for inference and control

Graph networks as learnable physics engines for inference and control

4 June 2018
Alvaro Sanchez-Gonzalez
N. Heess
Jost Tobias Springenberg
J. Merel
Martin Riedmiller
R. Hadsell
Peter W. Battaglia
    GNN
    AI4CE
    PINN
    OCL
ArXivPDFHTML

Papers citing "Graph networks as learnable physics engines for inference and control"

27 / 327 papers shown
Title
Graph Neural Processes: Towards Bayesian Graph Neural Networks
Graph Neural Processes: Towards Bayesian Graph Neural Networks
Andrew N. Carr
David Wingate
BDL
28
12
0
26 Feb 2019
Stochastic Prediction of Multi-Agent Interactions from Partial
  Observations
Stochastic Prediction of Multi-Agent Interactions from Partial Observations
Chen Sun
Per Karlsson
Jiajun Wu
J. Tenenbaum
Kevin Patrick Murphy
27
89
0
25 Feb 2019
AliGraph: A Comprehensive Graph Neural Network Platform
AliGraph: A Comprehensive Graph Neural Network Platform
Rong Zhu
Kun Zhao
Hongxia Yang
Wei Lin
Chang Zhou
Baole Ai
Yong Li
Jingren Zhou
GNN
22
385
0
23 Feb 2019
Learning to Control Self-Assembling Morphologies: A Study of
  Generalization via Modularity
Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity
Deepak Pathak
Chris Xiaoxuan Lu
Trevor Darrell
Phillip Isola
Alexei A. Efros
12
128
0
14 Feb 2019
Differentiable Physics-informed Graph Networks
Differentiable Physics-informed Graph Networks
Sungyong Seo
Yan Liu
PINN
AI4CE
17
67
0
08 Feb 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
28
854
0
18 Jan 2019
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
Renjie Liao
Zhizhen Zhao
R. Urtasun
R. Zemel
GNN
11
227
0
06 Jan 2019
Learning Generalizable Physical Dynamics of 3D Rigid Objects
Learning Generalizable Physical Dynamics of 3D Rigid Objects
Davis Rempe
Srinath Sridhar
He-Nan Wang
Leonidas J. Guibas
AI4CE
14
2
0
02 Jan 2019
Graph Neural Networks: A Review of Methods and Applications
Graph Neural Networks: A Review of Methods and Applications
Jie Zhou
Ganqu Cui
Shengding Hu
Zhengyan Zhang
Cheng Yang
Zhiyuan Liu
Lifeng Wang
Changcheng Li
Maosong Sun
AI4CE
GNN
28
5,397
0
20 Dec 2018
Modular meta-learning in abstract graph networks for combinatorial
  generalization
Modular meta-learning in abstract graph networks for combinatorial generalization
Ferran Alet
Maria Bauzá
Alberto Rodriguez
Tomas Lozano-Perez
L. Kaelbling
GNN
16
3
0
19 Dec 2018
Approximating the solution to wave propagation using deep neural
  networks
Approximating the solution to wave propagation using deep neural networks
Matthias Limmer
Stef Garasto
F. Schüle
R. Schweiger
Anil A. Bharath
21
21
0
04 Dec 2018
Spatio-Temporal Action Graph Networks
Spatio-Temporal Action Graph Networks
Roei Herzig
Elad Levi
Huijuan Xu
Hang Gao
Eli Brosh
Xiaolong Wang
Amir Globerson
Trevor Darrell
GNN
16
20
0
04 Dec 2018
Hardware Conditioned Policies for Multi-Robot Transfer Learning
Hardware Conditioned Policies for Multi-Robot Transfer Learning
Tao Chen
Adithyavairavan Murali
Abhinav Gupta
11
100
0
24 Nov 2018
Image-Level Attentional Context Modeling Using Nested-Graph Neural
  Networks
Image-Level Attentional Context Modeling Using Nested-Graph Neural Networks
Guillaume Jaume
Behzad Bozorgtabar
H. K. Ekenel
Jean-Philippe Thiran
M. Gabrani
21
2
0
09 Nov 2018
Modeling Attention Flow on Graphs
Modeling Attention Flow on Graphs
Xiaoran Xu
Songpeng Zu
Chengliang Gao
Yuan Zhang
Wei Feng
GNN
15
11
0
01 Nov 2018
Streaming Graph Neural Networks
Streaming Graph Neural Networks
Yao Ma
Ziyi Guo
Z. Ren
Eric Zhao
Jiliang Tang
Dawei Yin
GNN
11
236
0
24 Oct 2018
The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With
  Dynamic Spatiotemporal Graphs
The Trajectron: Probabilistic Multi-Agent Trajectory Modeling With Dynamic Spatiotemporal Graphs
B. Ivanovic
Marco Pavone
19
1
0
14 Oct 2018
Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable
  Objects, and Fluids
Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids
Yunzhu Li
Jiajun Wu
Russ Tedrake
J. Tenenbaum
Antonio Torralba
PINN
AI4CE
27
387
0
03 Oct 2018
ChainQueen: A Real-Time Differentiable Physical Simulator for Soft
  Robotics
ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics
Yuanming Hu
Jiancheng Liu
Andrew Spielberg
J. Tenenbaum
William T. Freeman
Jiajun Wu
Daniela Rus
Wojciech Matusik
AI4CE
9
260
0
02 Oct 2018
Propagation Networks for Model-Based Control Under Partial Observation
Propagation Networks for Model-Based Control Under Partial Observation
Yunzhu Li
Jiajun Wu
Jun-Yan Zhu
J. Tenenbaum
Antonio Torralba
Russ Tedrake
AI4CE
6
137
0
28 Sep 2018
Automatically Composing Representation Transformations as a Means for
  Generalization
Automatically Composing Representation Transformations as a Means for Generalization
Michael Chang
Abhishek Gupta
Sergey Levine
Thomas L. Griffiths
21
68
0
12 Jul 2018
Algorithmic Framework for Model-based Deep Reinforcement Learning with
  Theoretical Guarantees
Algorithmic Framework for Model-based Deep Reinforcement Learning with Theoretical Guarantees
Yuping Luo
Huazhe Xu
Yuanzhi Li
Yuandong Tian
Trevor Darrell
Tengyu Ma
OffRL
39
223
0
10 Jul 2018
Relational inductive biases, deep learning, and graph networks
Relational inductive biases, deep learning, and graph networks
Peter W. Battaglia
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
V. Zambaldi
...
Pushmeet Kohli
M. Botvinick
Oriol Vinyals
Yujia Li
Razvan Pascanu
AI4CE
NAI
91
3,077
0
04 Jun 2018
Unsupervised Intuitive Physics from Visual Observations
Unsupervised Intuitive Physics from Visual Observations
Sébastien Ehrhardt
Áron Monszpart
Niloy Mitra
Andrea Vedaldi
SSL
PINN
OOD
11
31
0
14 May 2018
A Compositional Object-Based Approach to Learning Physical Dynamics
A Compositional Object-Based Approach to Learning Physical Dynamics
Michael Chang
T. Ullman
Antonio Torralba
J. Tenenbaum
AI4CE
OCL
241
438
0
01 Dec 2016
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
278
1,400
0
01 Dec 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
244
3,236
0
24 Nov 2016
Previous
1234567