ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01796
  4. Cited By
Stochastic Gradient Descent on Separable Data: Exact Convergence with a
  Fixed Learning Rate

Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate

5 June 2018
Mor Shpigel Nacson
Nathan Srebro
Daniel Soudry
    FedML
    MLT
ArXivPDFHTML

Papers citing "Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate"

15 / 15 papers shown
Title
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Gradient Descent Robustly Learns the Intrinsic Dimension of Data in Training Convolutional Neural Networks
Chenyang Zhang
Peifeng Gao
Difan Zou
Yuan Cao
OOD
MLT
59
0
0
11 Apr 2025
The Implicit Bias of Batch Normalization in Linear Models and Two-layer
  Linear Convolutional Neural Networks
The Implicit Bias of Batch Normalization in Linear Models and Two-layer Linear Convolutional Neural Networks
Yuan Cao
Difan Zou
Yuan-Fang Li
Quanquan Gu
MLT
29
5
0
20 Jun 2023
Implicit Bias of Gradient Descent for Logistic Regression at the Edge of
  Stability
Implicit Bias of Gradient Descent for Logistic Regression at the Edge of Stability
Jingfeng Wu
Vladimir Braverman
Jason D. Lee
24
17
0
19 May 2023
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
17
8
0
19 Sep 2022
On the Implicit Bias in Deep-Learning Algorithms
On the Implicit Bias in Deep-Learning Algorithms
Gal Vardi
FedML
AI4CE
32
72
0
26 Aug 2022
Why adversarial training can hurt robust accuracy
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Stability vs Implicit Bias of Gradient Methods on Separable Data and
  Beyond
Stability vs Implicit Bias of Gradient Methods on Separable Data and Beyond
Matan Schliserman
Tomer Koren
16
23
0
27 Feb 2022
Benign Overfitting in Adversarially Robust Linear Classification
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
28
10
0
31 Dec 2021
Label-Imbalanced and Group-Sensitive Classification under
  Overparameterization
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
27
93
0
02 Mar 2021
To Each Optimizer a Norm, To Each Norm its Generalization
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Simon Lacoste-Julien
Nicolas Le Roux
24
8
0
11 Jun 2020
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
23
214
0
03 Dec 2019
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU
  Networks
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
16
446
0
21 Nov 2018
Condition Number Analysis of Logistic Regression, and its Implications
  for Standard First-Order Solution Methods
Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solution Methods
R. Freund
Paul Grigas
Rahul Mazumder
17
10
0
20 Oct 2018
Learning ReLU Networks on Linearly Separable Data: Algorithm,
  Optimality, and Generalization
Learning ReLU Networks on Linearly Separable Data: Algorithm, Optimality, and Generalization
G. Wang
G. Giannakis
Jie Chen
MLT
22
131
0
14 Aug 2018
When Will Gradient Methods Converge to Max-margin Classifier under ReLU
  Models?
When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models?
Tengyu Xu
Yi Zhou
Kaiyi Ji
Yingbin Liang
18
19
0
12 Jun 2018
1