ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01963
  4. Cited By
MILD-Net: Minimal Information Loss Dilated Network for Gland Instance
  Segmentation in Colon Histology Images

MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images

5 June 2018
S. Graham
Hao Chen
Jevgenij Gamper
Qi Dou
Pheng-Ann Heng
David R. J. Snead
Yee Wah Tsang
Nasir M. Rajpoot
    MedIm
ArXivPDFHTML

Papers citing "MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images"

21 / 21 papers shown
Title
Recent Advances in Medical Imaging Segmentation: A Survey
Recent Advances in Medical Imaging Segmentation: A Survey
Fares Bougourzi
Abdenour Hadid
OOD
36
0
0
14 May 2025
RepSNet: A Nucleus Instance Segmentation model based on Boundary Regression and Structural Re-parameterization
RepSNet: A Nucleus Instance Segmentation model based on Boundary Regression and Structural Re-parameterization
Shengchun Xiong
Xiangru Li
Yunpeng Zhong
Wanfen Peng
62
0
0
08 May 2025
UniBiomed: A Universal Foundation Model for Grounded Biomedical Image Interpretation
UniBiomed: A Universal Foundation Model for Grounded Biomedical Image Interpretation
Linshan Wu
Yuxiang Nie
Sunan He
Jiaxin Zhuang
Hao Chen
LM&MA
MedIm
73
0
0
30 Apr 2025
Tissue Concepts: supervised foundation models in computational pathology
Tissue Concepts: supervised foundation models in computational pathology
Till Nicke
Jan Raphael Schaefer
Henning Hoefener
Friedrich Feuerhake
Dorit Merhof
Fabian Kiessling
Johannes Lotz
MedIm
42
0
0
05 Sep 2024
Inter- and intra-uncertainty based feature aggregation model for
  semi-supervised histopathology image segmentation
Inter- and intra-uncertainty based feature aggregation model for semi-supervised histopathology image segmentation
Qiangguo Jin
Hui Cui
Changming Sun
Yang Song
Jiangbin Zheng
Leilei Cao
Leyi Wei
Ran Su
41
17
0
19 Mar 2024
Gland Segmentation Via Dual Encoders and Boundary-Enhanced Attention
Gland Segmentation Via Dual Encoders and Boundary-Enhanced Attention
Huadeng Wang
Jiejiang Yu
Bingbing Li
Xipeng Pan
Zhenbing Liu
Rushi Lan
Xiaonan Luo
MedIm
18
0
0
29 Jan 2024
Guided Patch-Grouping Wavelet Transformer with Spatial Congruence for
  Ultra-High Resolution Segmentation
Guided Patch-Grouping Wavelet Transformer with Spatial Congruence for Ultra-High Resolution Segmentation
Deyi Ji
Feng Zhao
Hongtao Lu
ViT
41
15
0
03 Jul 2023
GNNFormer: A Graph-based Framework for Cytopathology Report Generation
GNNFormer: A Graph-based Framework for Cytopathology Report Generation
Yangqiaoyu Zhou
Kai-Lang Yao
Wusuo Li
MedIm
11
1
0
17 Mar 2023
Precise Location Matching Improves Dense Contrastive Learning in Digital
  Pathology
Precise Location Matching Improves Dense Contrastive Learning in Digital Pathology
Jingwei Zhang
S. Kapse
Ke Ma
Prateek Prasanna
Maria Vakalopoulou
Joel H. Saltz
Dimitris Samaras
18
9
0
23 Dec 2022
ConCL: Concept Contrastive Learning for Dense Prediction Pre-training in
  Pathology Images
ConCL: Concept Contrastive Learning for Dense Prediction Pre-training in Pathology Images
Jiawei Yang
Hanbo Chen
Yuan Liang
Junzhou Huang
Lei He
Jianhua Yao
30
18
0
14 Jul 2022
Influence of uncertainty estimation techniques on false-positive
  reduction in liver lesion detection
Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection
Ishaan Bhat
J. Pluim
M. Viergever
Hugo J. Kuijf
MedIm
19
4
0
22 Jun 2022
A review of machine learning approaches, challenges and prospects for
  computational tumor pathology
A review of machine learning approaches, challenges and prospects for computational tumor pathology
Liangrui Pan
Zhichao Feng
Shaoliang Peng
AI4CE
13
7
0
31 May 2022
Generalisation effects of predictive uncertainty estimation in deep
  learning for digital pathology
Generalisation effects of predictive uncertainty estimation in deep learning for digital pathology
Milda Pocevičiūtė
Gabriel Eilertsen
Sofia Jarkman
Claes Lundström
OOD
UQCV
17
24
0
17 Dec 2021
Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation
  and Classification
Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation and Classification
S. Graham
Mostafa Jahanifar
A. Azam
M. Nimir
Yee Wah Tsang
...
S. Raza
H. Eldaly
K. Gopalakrishnan
David R. J. Snead
Nasir M. Rajpoot
22
123
0
25 Aug 2021
MCUa: Multi-level Context and Uncertainty aware Dynamic Deep Ensemble
  for Breast Cancer Histology Image Classification
MCUa: Multi-level Context and Uncertainty aware Dynamic Deep Ensemble for Breast Cancer Histology Image Classification
Zakaria Senousy
M. Abdelsamea
M. Gaber
Moloud Abdar
R. Acharya
Abbas Khosravi
S. Nahavandi
10
55
0
24 Aug 2021
Sparse-shot Learning with Exclusive Cross-Entropy for Extremely Many
  Localisations
Sparse-shot Learning with Exclusive Cross-Entropy for Extremely Many Localisations
Andreas Panteli
Jonas Teuwen
H. Horlings
E. Gavves
21
3
0
21 Apr 2021
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in
  Histology Images
Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images
S. Graham
David B. A. Epstein
Nasir M. Rajpoot
13
87
0
06 Apr 2020
Assessing Reliability and Challenges of Uncertainty Estimations for
  Medical Image Segmentation
Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image Segmentation
Alain Jungo
M. Reyes
UQCV
19
134
0
07 Jul 2019
SPDA: Superpixel-based Data Augmentation for Biomedical Image
  Segmentation
SPDA: Superpixel-based Data Augmentation for Biomedical Image Segmentation
Yizhe Zhang
Lin Yang
Hao Zheng
Peixian Liang
Colleen A. Mangold
R. Loreto
David P. Hughes
D. Z. Chen
MedIm
22
13
0
28 Feb 2019
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
278
10,608
0
19 Feb 2017
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
249
9,134
0
06 Jun 2015
1