ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.02199
  4. Cited By
SOM-VAE: Interpretable Discrete Representation Learning on Time Series

SOM-VAE: Interpretable Discrete Representation Learning on Time Series

6 June 2018
Vincent Fortuin
Matthias Huser
Francesco Locatello
Heiko Strathmann
Gunnar Rätsch
    BDL
    AI4TS
ArXivPDFHTML

Papers citing "SOM-VAE: Interpretable Discrete Representation Learning on Time Series"

15 / 15 papers shown
Title
Explainable and Interpretable Forecasts on Non-Smooth Multivariate Time Series for Responsible Gameplay
Explainable and Interpretable Forecasts on Non-Smooth Multivariate Time Series for Responsible Gameplay
Hussain Jagirdar
Rukma Talwadker
Aditya Pareek
Pulkit Agrawal
Tridib Mukherjee
AI4TS
36
1
0
03 Apr 2025
On the Challenges and Opportunities in Generative AI
On the Challenges and Opportunities in Generative AI
Laura Manduchi
Kushagra Pandey
Robert Bamler
Ryan Cotterell
Sina Daubener
...
F. Wenzel
Frank Wood
Stephan Mandt
Vincent Fortuin
Vincent Fortuin
56
17
0
28 Feb 2024
Symmetrical SyncMap for Imbalanced General Chunking Problems
Symmetrical SyncMap for Imbalanced General Chunking Problems
Heng Zhang
Danilo Vasconcellos Vargas
11
0
0
16 Oct 2023
eVAE: Evolutionary Variational Autoencoder
eVAE: Evolutionary Variational Autoencoder
Zhangkai Wu
LongBing Cao
Lei Qi
BDL
DRL
25
10
0
01 Jan 2023
Behavior Estimation from Multi-Source Data for Offline Reinforcement
  Learning
Behavior Estimation from Multi-Source Data for Offline Reinforcement Learning
Guoxi Zhang
H. Kashima
OffRL
21
2
0
29 Nov 2022
Task-aware Similarity Learning for Event-triggered Time Series
Task-aware Similarity Learning for Event-triggered Time Series
Shaoyu Dou
Kai Yang
Yang Jiao
Chengbo Qiu
Kui Ren
AI4TS
9
0
0
17 Jul 2022
Global Context with Discrete Diffusion in Vector Quantised Modelling for
  Image Generation
Global Context with Discrete Diffusion in Vector Quantised Modelling for Image Generation
Minghui Hu
Yujie Wang
Tat-Jen Cham
Jianfei Yang
P.N.Suganthan
DiffM
11
40
0
03 Dec 2021
Evidential Softmax for Sparse Multimodal Distributions in Deep
  Generative Models
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models
Phil Chen
Masha Itkina
Ransalu Senanayake
Mykel J. Kochenderfer
28
6
0
27 Oct 2021
Temporal Clustering with External Memory Network for Disease Progression
  Modeling
Temporal Clustering with External Memory Network for Disease Progression Modeling
Zicong Zhang
Changchang Yin
Ping Zhang
34
1
0
29 Sep 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
TimeAutoML: Autonomous Representation Learning for Multivariate
  Irregularly Sampled Time Series
TimeAutoML: Autonomous Representation Learning for Multivariate Irregularly Sampled Time Series
Yang Jiao
Kai Yang
Shaoyu Dou
Pan Luo
Sijia Liu
Dongjin Song
AI4TS
8
6
0
04 Oct 2020
Temporal Phenotyping using Deep Predictive Clustering of Disease
  Progression
Temporal Phenotyping using Deep Predictive Clustering of Disease Progression
Changhee Lee
M. Schaar
OOD
11
53
0
15 Jun 2020
Continual General Chunking Problem and SyncMap
Continual General Chunking Problem and SyncMap
Danilo Vasconcellos Vargas
Toshitake Asabuki
16
7
0
14 Jun 2020
GP-VAE: Deep Probabilistic Time Series Imputation
GP-VAE: Deep Probabilistic Time Series Imputation
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
Stephan Mandt
BDL
AI4TS
17
245
0
09 Jul 2019
Boosting Black Box Variational Inference
Boosting Black Box Variational Inference
Francesco Locatello
Gideon Dresdner
Rajiv Khanna
Isabel Valera
Gunnar Rätsch
6
31
0
06 Jun 2018
1