ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.03106
  4. Cited By
Uncertainty-driven Sanity Check: Application to Postoperative Brain
  Tumor Cavity Segmentation

Uncertainty-driven Sanity Check: Application to Postoperative Brain Tumor Cavity Segmentation

8 June 2018
Alain Jungo
Raphael Meier
E. Ermiş
Evelyn Herrmann
M. Reyes
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Uncertainty-driven Sanity Check: Application to Postoperative Brain Tumor Cavity Segmentation"

19 / 19 papers shown
AI-Assisted Decision-Making for Clinical Assessment of Auto-Segmented Contour Quality
AI-Assisted Decision-Making for Clinical Assessment of Auto-Segmented Contour Quality
Biling Wang
Austen Maniscalco
T. Bai
Siqiu Wang
M. Dohopolski
...
Chenyang Shen
D. Nguyen
Junzhou Huang
Steve B. Jiang
Xinlei Wang
289
0
0
01 May 2025
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
1.1K
1
0
25 Nov 2024
Unsupervised out-of-distribution detection for safer robotically guided
  retinal microsurgery
Unsupervised out-of-distribution detection for safer robotically guided retinal microsurgeryInternational Journal of Computer Assisted Radiology and Surgery (IJCARS), 2023
Alain Jungo
Lars Doorenbos
Tommaso Da Col
Maarten J. Beelen
M. Zinkernagel
Pablo Márquez-Neila
Raphael Sznitman
OODD
240
6
0
11 Apr 2023
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
259
144
0
05 Oct 2022
Transformer-based out-of-distribution detection for clinically safe
  segmentation
Transformer-based out-of-distribution detection for clinically safe segmentationInternational Conference on Medical Imaging with Deep Learning (MIDL), 2022
M. Graham
Petru-Daniel Tudosiu
P. Wright
W. H. Pinaya
J. U-King-im
...
H. Jäger
D. Werring
P. Nachev
Sebastien Ourselin
M. Jorge Cardoso
MedIm
160
26
0
21 May 2022
Automatic quality control framework for more reliable integration of
  machine learning-based image segmentation into medical workflows
Automatic quality control framework for more reliable integration of machine learning-based image segmentation into medical workflows
Elena Williams
Sebastian Niehaus
J. Reinelt
A. Merola
P. Mihai
...
Evelyn Medawar
Daniel Lichterfeld
Ingo Roeder
N. Scherf
Maria del C. Valdés Hernández
232
4
0
06 Dec 2021
Hardware-aware Real-time Myocardial Segmentation Quality Control in
  Contrast Echocardiography
Hardware-aware Real-time Myocardial Segmentation Quality Control in Contrast Echocardiography
Dewen Zeng
Yukun Ding
Haiyun Yuan
Meiping Huang
Xiaowei Xu
Zhuang Jian
Jingtong Hu
Yiyu Shi
121
1
0
14 Sep 2021
FSNet: A Failure Detection Framework for Semantic Segmentation
FSNet: A Failure Detection Framework for Semantic Segmentation
Q. Rahman
Niko Sünderhauf
Peter Corke
Feras Dayoub
UQCVSSeg
177
21
0
19 Aug 2021
U-LanD: Uncertainty-Driven Video Landmark Detection
U-LanD: Uncertainty-Driven Video Landmark DetectionIEEE Transactions on Medical Imaging (IEEE TMI), 2021
Mohammad Jafari
C. Luong
Michael Y. Tsang
A. Gu
N. V. Woudenberg
R. Rohling
T. Tsang
Purang Abolmaesumi
189
15
0
02 Feb 2021
Using uncertainty estimation to reduce false positives in liver lesion
  detection
Using uncertainty estimation to reduce false positives in liver lesion detectionIEEE International Symposium on Biomedical Imaging (ISBI), 2021
Ishaan Bhat
Hugo J. Kuijf
Veronika Cheplygina
J. Pluim
MedIm
385
10
0
12 Jan 2021
Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation:
  A Benchmark Study
Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A Benchmark StudyIEEE Transactions on Biomedical Engineering (IEEE TBME), 2020
Matthew Ng
F. Guo
L. Biswas
S. Petersen
Stefan K. Piechnik
S. Neubauer
G. Wright
UQCV
222
42
0
31 Dec 2020
Automatic segmentation with detection of local segmentation failures in
  cardiac MRI
Automatic segmentation with detection of local segmentation failures in cardiac MRIScientific Reports (Sci Rep), 2020
Jörg Sander
B. D. de Vos
Ivana Išgum
186
61
0
13 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and ChallengesInformation Fusion (Inf. Fusion), 2020
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Tianpeng Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
955
2,296
0
12 Nov 2020
pymia: A Python package for data handling and evaluation in deep
  learning-based medical image analysis
pymia: A Python package for data handling and evaluation in deep learning-based medical image analysis
Alain Jungo
Olivier Scheidegger
Mauricio Reyes
F. Balsiger
202
42
0
07 Oct 2020
Synthesize then Compare: Detecting Failures and Anomalies for Semantic
  Segmentation
Synthesize then Compare: Detecting Failures and Anomalies for Semantic SegmentationEuropean Conference on Computer Vision (ECCV), 2020
Yingda Xia
Yi Zhang
Fengze Liu
Wei Shen
Alan Yuille
UQCV
265
161
0
18 Mar 2020
Assessing Reliability and Challenges of Uncertainty Estimations for
  Medical Image Segmentation
Assessing Reliability and Challenges of Uncertainty Estimations for Medical Image SegmentationInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2019
Alain Jungo
M. Reyes
UQCV
243
157
0
07 Jul 2019
Supervised Uncertainty Quantification for Segmentation with Multiple
  Annotations
Supervised Uncertainty Quantification for Segmentation with Multiple AnnotationsInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2019
Shi Hu
Daniel E. Worrall
Stefan Knegt
Bastiaan S. Veeling
Henkjan Huisman
Max Welling
UQCV
147
104
0
03 Jul 2019
Few-shot brain segmentation from weakly labeled data with deep
  heteroscedastic multi-task networks
Few-shot brain segmentation from weakly labeled data with deep heteroscedastic multi-task networks
Richard McKinley
Michael Rebsamen
Raphael Meier
M. Reyes
C. Rummel
Roland Wiest
81
13
0
04 Apr 2019
An Alarm System For Segmentation Algorithm Based On Shape Model
An Alarm System For Segmentation Algorithm Based On Shape Model
Fengze Liu
Yingda Xia
Ke Wang
Alan Yuille
Daguang Xu
193
22
0
26 Mar 2019
1