ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.03195
  4. Cited By
Obtaining fairness using optimal transport theory
v1v2 (latest)

Obtaining fairness using optimal transport theory

8 June 2018
E. del Barrio
Fabrice Gamboa
Paula Gordaliza
Jean-Michel Loubes
    FaML
ArXiv (abs)PDFHTML

Papers citing "Obtaining fairness using optimal transport theory"

50 / 59 papers shown
Title
FaiREE: Fair Classification with Finite-Sample and Distribution-Free Guarantee
FaiREE: Fair Classification with Finite-Sample and Distribution-Free Guarantee
Puheng Li
James Zou
Linjun Zhang
FaML
532
4
0
13 Mar 2025
Learning with Differentially Private (Sliced) Wasserstein Gradients
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
113
0
0
03 Feb 2025
Reducing Biases in Record Matching Through Scores Calibration
Reducing Biases in Record Matching Through Scores Calibration
Mohammad Hossein Moslemi
Mostafa Milani
44
0
0
03 Nov 2024
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Randomized Transport Plans via Hierarchical Fully Probabilistic Design
Sarah Boufelja
Anthony Quinn
Robert Shorten
OT
120
0
0
04 Aug 2024
On the Power of Randomization in Fair Classification and Representation
On the Power of Randomization in Fair Classification and Representation
Sushant Agarwal
Amit Deshpande
FaML
78
5
0
05 Jun 2024
Recent Advances in Optimal Transport for Machine Learning
Recent Advances in Optimal Transport for Machine Learning
Eduardo Fernandes Montesuma
Fred-Maurice Ngole-Mboula
Antoine Souloumiac
OODOT
96
39
0
28 Jun 2023
Fairness in Multi-Task Learning via Wasserstein Barycenters
Fairness in Multi-Task Learning via Wasserstein Barycenters
Franccois Hu
Philipp Ratz
Arthur Charpentier
143
10
0
16 Jun 2023
Runtime Monitoring of Dynamic Fairness Properties
Runtime Monitoring of Dynamic Fairness Properties
T. Henzinger
Mahyar Karimi
Konstantin Kueffner
Kaushik Mallik
66
17
0
08 May 2023
Mitigating Source Bias for Fairer Weak Supervision
Mitigating Source Bias for Fairer Weak Supervision
Changho Shin
Sonia Cromp
Dyah Adila
Frederic Sala
71
2
0
30 Mar 2023
Equal Improvability: A New Fairness Notion Considering the Long-term
  Impact
Equal Improvability: A New Fairness Notion Considering the Long-term Impact
Ozgur Guldogan
Yuchen Zeng
Jy-yong Sohn
Ramtin Pedarsani
Kangwook Lee
FaML
83
14
0
13 Oct 2022
fAux: Testing Individual Fairness via Gradient Alignment
fAux: Testing Individual Fairness via Gradient Alignment
Giuseppe Castiglione
Ga Wu
C. Srinivasa
Simon J. D. Prince
55
4
0
10 Oct 2022
Quantile-constrained Wasserstein projections for robust interpretability
  of numerical and machine learning models
Quantile-constrained Wasserstein projections for robust interpretability of numerical and machine learning models
Marouane Il Idrissi
Nicolas Bousquet
Fabrice Gamboa
Bertrand Iooss
Jean-Michel Loubes
102
3
0
23 Sep 2022
Fair mapping
Fair mapping
Sébastien Gambs
Rosin Claude Ngueveu
68
0
0
01 Sep 2022
More Data Can Lead Us Astray: Active Data Acquisition in the Presence of
  Label Bias
More Data Can Lead Us Astray: Active Data Acquisition in the Presence of Label Bias
Yunyi Li
Maria De-Arteaga
M. Saar-Tsechansky
FaML
83
3
0
15 Jul 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaMLAI4CE
107
177
0
14 Jul 2022
Central limit theorem for the Sliced 1-Wasserstein distance and the
  max-Sliced 1-Wasserstein distance
Central limit theorem for the Sliced 1-Wasserstein distance and the max-Sliced 1-Wasserstein distance
Xianliang Xu
Zhongyi Huang
97
7
0
29 May 2022
An improved central limit theorem and fast convergence rates for
  entropic transportation costs
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
71
36
0
19 Apr 2022
Obtaining Dyadic Fairness by Optimal Transport
Obtaining Dyadic Fairness by Optimal Transport
Moyi Yang
Junjie Sheng
Xiangfeng Wang
Wenyan Liu
Bo Jin
Jun Wang
H. Zha
70
6
0
09 Feb 2022
Optimal Transport of Classifiers to Fairness
Optimal Transport of Classifiers to Fairness
Maarten Buyl
T. D. Bie
FaML
44
11
0
08 Feb 2022
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Luc Brogat-Motte
Rémi Flamary
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
92
23
0
08 Feb 2022
A Sociotechnical View of Algorithmic Fairness
A Sociotechnical View of Algorithmic Fairness
Mateusz Dolata
Stefan Feuerriegel
Gerhard Schwabe
FaML
76
100
0
27 Sep 2021
Transport-based Counterfactual Models
Transport-based Counterfactual Models
Lucas de Lara
Alberto González Sanz
Nicholas M. Asher
Laurent Risser
Jean-Michel Loubes
52
31
0
30 Aug 2021
Plugin Estimation of Smooth Optimal Transport Maps
Plugin Estimation of Smooth Optimal Transport Maps
Tudor Manole
Sivaraman Balakrishnan
Jonathan Niles-Weed
Larry A. Wasserman
OT
89
100
0
26 Jul 2021
Rates of Estimation of Optimal Transport Maps using Plug-in Estimators
  via Barycentric Projections
Rates of Estimation of Optimal Transport Maps using Plug-in Estimators via Barycentric Projections
Nabarun Deb
Promit Ghosal
B. Sen
OT
126
75
0
04 Jul 2021
Fairness seen as Global Sensitivity Analysis
Fairness seen as Global Sensitivity Analysis
Clément Bénesse
Fabrice Gamboa
Jean-Michel Loubes
Thibaut Boissin
55
16
0
08 Mar 2021
Central Limit Theorems for General Transportation Costs
Central Limit Theorems for General Transportation Costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
OT
62
28
0
12 Feb 2021
Fairness with Continuous Optimal Transport
Fairness with Continuous Optimal Transport
Silvia Chiappa
Aldo Pacchiano
OT
92
13
0
06 Jan 2021
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
321
500
0
31 Dec 2020
A Statistical Test for Probabilistic Fairness
A Statistical Test for Probabilistic Fairness
Bahar Taşkesen
Jose H. Blanchet
Daniel Kuhn
Viet Anh Nguyen
FaML
76
41
0
09 Dec 2020
A contribution to Optimal Transport on incomparable spaces
A contribution to Optimal Transport on incomparable spaces
Titouan Vayer
OT
73
20
0
09 Nov 2020
All of the Fairness for Edge Prediction with Optimal Transport
All of the Fairness for Edge Prediction with Optimal Transport
Charlotte Laclau
I. Redko
Manvi Choudhary
C. Largeron
FaML
64
43
0
30 Oct 2020
Robust Fairness under Covariate Shift
Robust Fairness under Covariate Shift
Ashkan Rezaei
Anqi Liu
Omid Memarrast
Brian Ziebart
TTAOOD
135
86
0
11 Oct 2020
Fairness in Machine Learning: A Survey
Fairness in Machine Learning: A Survey
Simon Caton
C. Haas
FaML
108
653
0
04 Oct 2020
On the Fairness of 'Fake' Data in Legal AI
On the Fairness of 'Fake' Data in Legal AI
Lauren Boswell
A. Prakash
10
1
0
10 Sep 2020
A Distributionally Robust Approach to Fair Classification
A Distributionally Robust Approach to Fair Classification
Bahar Taşkesen
Viet Anh Nguyen
Daniel Kuhn
Jose H. Blanchet
FaML
70
62
0
18 Jul 2020
Achieving Fairness via Post-Processing in Web-Scale Recommender Systems
Achieving Fairness via Post-Processing in Web-Scale Recommender Systems
Preetam Nandy
Cyrus DiCiccio
Divya Venugopalan
Heloise Logan
Kinjal Basu
N. Karoui
FaML
103
30
0
19 Jun 2020
Fair Regression with Wasserstein Barycenters
Fair Regression with Wasserstein Barycenters
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
97
108
0
12 Jun 2020
Fair Classification with Noisy Protected Attributes: A Framework with
  Provable Guarantees
Fair Classification with Noisy Protected Attributes: A Framework with Provable Guarantees
L. E. Celis
Lingxiao Huang
Vijay Keswani
Nisheeth K. Vishnoi
FaML
44
9
0
08 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaMLFedML
69
40
0
26 May 2020
Projection to Fairness in Statistical Learning
Projection to Fairness in Statistical Learning
Thibaut Le Gouic
Jean-Michel Loubes
Philippe Rigollet
74
3
0
24 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAMLXAI
114
380
0
30 Apr 2020
A survey of bias in Machine Learning through the prism of Statistical
  Parity for the Adult Data Set
A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set
Philippe C. Besse
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
Laurent Risser
FaML
70
66
0
31 Mar 2020
Fairness in Learning-Based Sequential Decision Algorithms: A Survey
Fairness in Learning-Based Sequential Decision Algorithms: A Survey
Xueru Zhang
M. Liu
FaML
154
51
0
14 Jan 2020
Quantitative stability of optimal transport maps and linearization of
  the 2-Wasserstein space
Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space
Q. Mérigot
Alex Delalande
Frédéric Chazal
OT
53
44
0
14 Oct 2019
Estimation of Wasserstein distances in the Spiked Transport Model
Estimation of Wasserstein distances in the Spiked Transport Model
Jonathan Niles-Weed
Philippe Rigollet
85
103
0
16 Sep 2019
Tackling Algorithmic Bias in Neural-Network Classifiers using
  Wasserstein-2 Regularization
Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
95
21
0
15 Aug 2019
Wasserstein Fair Classification
Wasserstein Fair Classification
Ray Jiang
Aldo Pacchiano
T. Stepleton
Heinrich Jiang
Silvia Chiappa
71
181
0
28 Jul 2019
Statistical data analysis in the Wasserstein space
Statistical data analysis in the Wasserstein space
Jérémie Bigot
69
32
0
19 Jul 2019
Learning Fair Representations for Kernel Models
Learning Fair Representations for Kernel Models
Zilong Tan
Samuel Yeom
Matt Fredrikson
Ameet Talwalkar
FaML
110
25
0
27 Jun 2019
Fairness criteria through the lens of directed acyclic graphical models
Fairness criteria through the lens of directed acyclic graphical models
Benjamin R. Baer
Daniel E. Gilbert
M. Wells
FaML
72
6
0
26 Jun 2019
12
Next