ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.05228
  4. Cited By
3D-CODED : 3D Correspondences by Deep Deformation

3D-CODED : 3D Correspondences by Deep Deformation

13 June 2018
Thibault Groueix
Matthew Fisher
Vladimir G. Kim
Bryan C. Russell
Mathieu Aubry
    3DPC
    3DV
ArXivPDFHTML

Papers citing "3D-CODED : 3D Correspondences by Deep Deformation"

4 / 4 papers shown
Title
Denoising Functional Maps: Diffusion Models for Shape Correspondence
Denoising Functional Maps: Diffusion Models for Shape Correspondence
Aleksei Zhuravlev
Zorah Lähner
Vladislav Golyanik
DiffM
58
1
0
03 Mar 2025
NeuroGauss4D-PCI: 4D Neural Fields and Gaussian Deformation Fields for Point Cloud Interpolation
NeuroGauss4D-PCI: 4D Neural Fields and Gaussian Deformation Fields for Point Cloud Interpolation
Chaokang Jiang
Dalong Du
Jiuming Liu
Siting Zhu
Zhenqiang Liu
Zhuang Ma
Zhujin Liang
Jie Zhou
30
2
0
23 May 2024
Learning a Task-specific Descriptor for Robust Matching of 3D Point
  Clouds
Learning a Task-specific Descriptor for Robust Matching of 3D Point Clouds
Zhiyuan Zhang
Yuchao Dai
Bin Fan
Jiadai Sun
Mingyi He
3DPC
24
6
0
26 Oct 2022
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
231
1,801
0
25 Nov 2016
1