Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.05805
Cited By
Molecular generative model based on conditional variational autoencoder for de novo molecular design
15 June 2018
Jaechang Lim
Seongok Ryu
Jin Woo Kim
W. Kim
BDL
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Molecular generative model based on conditional variational autoencoder for de novo molecular design"
33 / 33 papers shown
Title
MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
Zimo Yan
Jie Zhang
Zheng Xie
Chang-rui Liu
Yong-Jin Liu
Yiping Song
36
0
0
22 Apr 2025
Bayesian Flow Is All You Need to Sample Out-of-Distribution Chemical Spaces
Nianze Tao
OOD
OODD
BDL
108
0
0
16 Dec 2024
Uncertainty-enabled machine learning for emulation of regional sea-level change caused by the Antarctic Ice Sheet
Myungsoo Yoo
Giri Gopalan
Matthew J. Hoffman
Sophie Coulson
Holly Kyeore Han
C. Wikle
Trevor Hillebrand
AI4Cl
18
2
0
21 Jun 2024
Overcoming Order in Autoregressive Graph Generation
Edo Cohen-Karlik
Eyal Rozenberg
Daniel Freedman
34
1
0
04 Feb 2024
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
24
6
0
27 Dec 2023
Language models in molecular discovery
Chaoqi Wang
Yibo Jiang
Chenghao Yang
Han Liu
Yuxin Chen
23
7
0
28 Sep 2023
Diffusion probabilistic models enhance variational autoencoder for crystal structure generative modeling
T. Pakornchote
Natthaphon Choomphon-anomakhun
Sorrjit Arrerut
C. Atthapak
S. Khamkaeo
Thiparat Chotibut
T. Bovornratanaraks
DiffM
29
17
0
04 Aug 2023
Coupled Variational Autoencoder
Xiaoran Hao
Patrick Shafto
BDL
DRL
24
4
0
05 Jun 2023
GraphGANFed: A Federated Generative Framework for Graph-Structured Molecules Towards Efficient Drug Discovery
Daniel Manu
Jingjing Yao
Wuji Liu
Xiang Sun
FedML
35
6
0
11 Apr 2023
Conditional Generative Models are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems
Fabian Altekrüger
Paul Hagemann
Gabriele Steidl
TPM
26
9
0
28 Mar 2023
Deep Reinforcement Learning for Inverse Inorganic Materials Design
Elton Pan
Christopher Karpovich
E. Olivetti
AI4CE
19
11
0
21 Oct 2022
Computer-Aided Multi-Objective Optimization in Small Molecule Discovery
Jenna C. Fromer
Connor W. Coley
29
67
0
13 Oct 2022
Modular Flows: Differential Molecular Generation
Yogesh Verma
Samuel Kaski
Markus Heinonen
Vikas K. Garg
29
14
0
12 Oct 2022
Exploring Chemical Space with Score-based Out-of-distribution Generation
Seul Lee
Jaehyeong Jo
Sung Ju Hwang
OODD
30
75
0
06 Jun 2022
Tyger: Task-Type-Generic Active Learning for Molecular Property Prediction
Kuangqi Zhou
Kaixin Wang
Jiashi Feng
Jian Tang
Tingyang Xu
Xinchao Wang
29
1
0
23 May 2022
Conditional
β
β
β
-VAE for De Novo Molecular Generation
Ryan J. Richards
A. Groener
BDL
DRL
24
10
0
01 May 2022
MGCVAE: Multi-objective Inverse Design via Molecular Graph Conditional Variational Autoencoder
Myeong-Sung Lee
K. Min
33
41
0
14 Feb 2022
De Novo Molecular Generation with Stacked Adversarial Model
Yuansan Liu
James Bailey
GAN
BDL
16
1
0
24 Oct 2021
Artificial Intelligence in Drug Discovery: Applications and Techniques
Jianyuan Deng
Zhibo Yang
Iwao Ojima
Dimitris Samaras
Fusheng Wang
AI4TS
23
100
0
09 Jun 2021
Polygrammar: Grammar for Digital Polymer Representation and Generation
Minghao Guo
Wan Shou
L. Makatura
Timothy Erps
Michael Foshey
Wojciech Matusik
32
24
0
05 May 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
32
2
0
04 Jan 2021
Generating 3D Molecular Structures Conditional on a Receptor Binding Site with Deep Generative Models
Tomohide Masuda
Matthew Ragoza
D. Koes
DiffM
34
52
0
16 Oct 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
Deep Learning and Knowledge-Based Methods for Computer Aided Molecular Design -- Toward a Unified Approach: State-of-the-Art and Future Directions
Abdulelah S. Alshehri
R. Gani
Fengqi You
AI4CE
30
83
0
18 May 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
G. Simm
Robert Pinsler
José Miguel Hernández-Lobato
AI4CE
18
82
0
18 Feb 2020
Molecular Generative Model Based On Adversarially Regularized Autoencoder
S. Hong
Jaechang Lim
Seongok Ryu
W. Kim
GAN
DRL
GNN
28
63
0
13 Nov 2019
Study of Deep Generative Models for Inorganic Chemical Compositions
Yoshihide Sawada
Koji Morikawa
Mikiya Fujii
GAN
17
13
0
25 Oct 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
26
201
0
02 Jun 2019
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
691
0
22 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
16
532
0
19 Oct 2018
Powerful, transferable representations for molecules through intelligent task selection in deep multitask networks
Clyde Fare
Lukas Turcani
Edward O. Pyzer-Knapp
24
13
0
17 Sep 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
39
76
0
16 Sep 2017
1