Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1806.09809
Cited By
Generating Counterfactual Explanations with Natural Language
26 June 2018
Lisa Anne Hendricks
Ronghang Hu
Trevor Darrell
Zeynep Akata
FAtt
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Generating Counterfactual Explanations with Natural Language"
44 / 44 papers shown
Locally Explaining Prediction Behavior via Gradual Interventions and Measuring Property Gradients
Niklas Penzel
Joachim Denzler
FAtt
335
0
0
07 Mar 2025
Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills
International Conference on Human Factors in Computing Systems (CHI), 2024
Zana Buçinca
S. Swaroop
Amanda E. Paluch
Finale Doshi-Velez
Krzysztof Z. Gajos
316
11
0
05 Oct 2024
See or Guess: Counterfactually Regularized Image Captioning
ACM Multimedia (MM), 2024
Qian Cao
Xu Chen
Ruihua Song
Xiting Wang
Xinting Huang
Yuchen Ren
CML
234
4
0
29 Aug 2024
HL Dataset: Visually-grounded Description of Scenes, Actions and Rationales
International Conference on Natural Language Generation (INLG), 2023
Michele Cafagna
Kees van Deemter
Albert Gatt
3DV
276
5
0
23 Feb 2023
Counterfactual Explanations for Misclassified Images: How Human and Machine Explanations Differ
Artificial Intelligence (AI), 2022
Eoin Delaney
A. Pakrashi
Derek Greene
Markt. Keane
270
22
0
16 Dec 2022
Explainability Via Causal Self-Talk
Neural Information Processing Systems (NeurIPS), 2022
Nicholas A. Roy
Junkyung Kim
Neil C. Rabinowitz
CML
221
8
0
17 Nov 2022
Towards Human-Centred Explainability Benchmarks For Text Classification
Viktor Schlegel
Erick Mendez Guzman
Riza Batista-Navarro
249
5
0
10 Nov 2022
The Utility of Explainable AI in Ad Hoc Human-Machine Teaming
Neural Information Processing Systems (NeurIPS), 2022
Rohan R. Paleja
Muyleng Ghuy
Nadun R. Arachchige
Reed Jensen
Matthew C. Gombolay
236
87
0
08 Sep 2022
Fooling Explanations in Text Classifiers
International Conference on Learning Representations (ICLR), 2022
Adam Ivankay
Ivan Girardi
Chiara Marchiori
P. Frossard
AAML
210
22
0
07 Jun 2022
MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation
Wenzhuo Yang
Jia Li
Caiming Xiong
Guosheng Lin
CML
234
14
0
31 May 2022
Counterfactual Explanations for Natural Language Interfaces
Annual Meeting of the Association for Computational Linguistics (ACL), 2022
George Tolkachev
Stephen Mell
Steve Zdancewic
Osbert Bastani
LRM
AAML
106
4
0
27 Apr 2022
Learning Interpretable, High-Performing Policies for Autonomous Driving
Rohan R. Paleja
Yaru Niu
Andrew Silva
Chace Ritchie
Sugju Choi
Matthew C. Gombolay
305
18
0
04 Feb 2022
Towards Relatable Explainable AI with the Perceptual Process
International Conference on Human Factors in Computing Systems (CHI), 2021
Wencan Zhang
Brian Y. Lim
AAML
XAI
269
72
0
28 Dec 2021
Exploring The Role of Local and Global Explanations in Recommender Systems
Marissa Radensky
Doug Downey
Kyle Lo
Z. Popović
Daniel S. Weld University of Washington
LRM
206
27
0
27 Sep 2021
CX-ToM: Counterfactual Explanations with Theory-of-Mind for Enhancing Human Trust in Image Recognition Models
Arjun Reddy Akula
Keze Wang
Changsong Liu
Sari Saba-Sadiya
Hongjing Lu
S. Todorovic
J. Chai
Song-Chun Zhu
276
57
0
03 Sep 2021
Counterfactual Explainable Recommendation
International Conference on Information and Knowledge Management (CIKM), 2021
Juntao Tan
Shuyuan Xu
Yingqiang Ge
Yunqi Li
Xu Chen
Zelong Li
CML
285
176
0
24 Aug 2021
The effectiveness of feature attribution methods and its correlation with automatic evaluation scores
Neural Information Processing Systems (NeurIPS), 2021
Giang Nguyen
Daeyoung Kim
Anh Totti Nguyen
FAtt
547
106
0
31 May 2021
A Review on Explainability in Multimodal Deep Neural Nets
IEEE Access (IEEE Access), 2021
Gargi Joshi
Rahee Walambe
K. Kotecha
402
171
0
17 May 2021
Abstraction, Validation, and Generalization for Explainable Artificial Intelligence
Applied AI Letters (AA), 2021
Scott Cheng-Hsin Yang
Tomas Folke
Patrick Shafto
187
7
0
16 May 2021
Local Interpretations for Explainable Natural Language Processing: A Survey
ACM Computing Surveys (CSUR), 2021
Siwen Luo
Michal Guerquin
S. Han
Josiah Poon
MILM
422
64
0
20 Mar 2021
Contrastive Explanations for Model Interpretability
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021
Alon Jacovi
Swabha Swayamdipta
Shauli Ravfogel
Yanai Elazar
Yejin Choi
Yoav Goldberg
415
110
0
02 Mar 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
International Joint Conference on Artificial Intelligence (IJCAI), 2021
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
322
168
0
26 Feb 2021
Teach Me to Explain: A Review of Datasets for Explainable Natural Language Processing
Sarah Wiegreffe
Ana Marasović
XAI
495
162
0
24 Feb 2021
Mitigating belief projection in explainable artificial intelligence via Bayesian Teaching
Scientific Reports (Sci Rep), 2021
Scott Cheng-Hsin Yang
Wai Keen Vong
Ravi B. Sojitra
Tomas Folke
Patrick Shafto
229
43
0
07 Feb 2021
Detecting Trojaned DNNs Using Counterfactual Attributions
International Conference on Applied Algorithms (ICAA), 2020
Karan Sikka
Indranil Sur
Susmit Jha
Anirban Roy
Ajay Divakaran
AAML
163
13
0
03 Dec 2020
Learning Models for Actionable Recourse
Neural Information Processing Systems (NeurIPS), 2020
Alexis Ross
Himabindu Lakkaraju
Osbert Bastani
FaML
251
20
0
12 Nov 2020
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
ACM Computing Surveys (ACM CSUR), 2020
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
724
252
0
20 Oct 2020
Multimodal Research in Vision and Language: A Review of Current and Emerging Trends
Shagun Uppal
Sarthak Bhagat
Devamanyu Hazarika
Navonil Majumdar
Soujanya Poria
Roger Zimmermann
Amir Zadeh
282
6
0
19 Oct 2020
Human-interpretable model explainability on high-dimensional data
Damien de Mijolla
Christopher Frye
M. Kunesch
J. Mansir
Ilya Feige
FAtt
167
12
0
14 Oct 2020
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition
IEEE International Conference on Computer Vision (ICCV), 2020
Liangzhi Li
Bowen Wang
Manisha Verma
Yuta Nakashima
R. Kawasaki
Hajime Nagahara
OCL
407
61
0
14 Sep 2020
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
268
24
0
26 Jun 2020
NILE : Natural Language Inference with Faithful Natural Language Explanations
Annual Meeting of the Association for Computational Linguistics (ACL), 2020
Sawan Kumar
Partha P. Talukdar
XAI
LRM
289
169
0
25 May 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
Computer Vision and Pattern Recognition (CVPR), 2020
Pei Wang
Nuno Vasconcelos
FAtt
196
93
0
16 Apr 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
SIGKDD Explorations (SIGKDD Explor.), 2020
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
285
241
0
09 Mar 2020
Explaining with Counter Visual Attributes and Examples
International Conference on Multimedia Retrieval (ICMR), 2020
Sadaf Gulshad
A. Smeulders
XAI
FAtt
AAML
165
15
0
27 Jan 2020
CheXplain: Enabling Physicians to Explore and UnderstandData-Driven, AI-Enabled Medical Imaging Analysis
International Conference on Human Factors in Computing Systems (CHI), 2020
Yao Xie
Melody Chen
David Kao
Ge Gao
Xiang Ánthony' Chen
450
142
0
15 Jan 2020
Explaining Classifiers using Adversarial Perturbations on the Perceptual Ball
Andrew Elliott
Stephen Law
Chris Russell
AAML
280
4
0
19 Dec 2019
How model accuracy and explanation fidelity influence user trust
International Joint Conference on Artificial Intelligence (IJCAI), 2019
A. Papenmeier
G. Englebienne
C. Seifert
FaML
111
125
0
26 Jul 2019
Explaining Classifiers with Causal Concept Effect (CaCE)
Yash Goyal
Amir Feder
Uri Shalit
Been Kim
CML
243
200
0
16 Jul 2019
Generating Counterfactual and Contrastive Explanations using SHAP
Shubham Rathi
152
64
0
21 Jun 2019
Interpretable and Personalized Apprenticeship Scheduling: Learning Interpretable Scheduling Policies from Heterogeneous User Demonstrations
Neural Information Processing Systems (NeurIPS), 2019
Rohan R. Paleja
Andrew Silva
Letian Chen
Matthew C. Gombolay
332
38
0
14 Jun 2019
Modularized Textual Grounding for Counterfactual Resilience
Zhiyuan Fang
Shu Kong
Charless C. Fowlkes
Yezhou Yang
194
33
0
07 Apr 2019
Contrastive Explanation: A Structural-Model Approach
Tim Miller
CML
216
187
0
07 Nov 2018
Explainable artificial intelligence (XAI), the goodness criteria and the grasp-ability test
Tae Wan Kim
XAI
84
15
0
22 Oct 2018
1
Page 1 of 1