ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.10060
  4. Cited By
Large Sample Asymptotics of the Pseudo-Marginal Method

Large Sample Asymptotics of the Pseudo-Marginal Method

26 June 2018
Sebastian M. Schmon
George Deligiannidis
Arnaud Doucet
M. Pitt
ArXivPDFHTML

Papers citing "Large Sample Asymptotics of the Pseudo-Marginal Method"

11 / 11 papers shown
Title
Particle Semi-Implicit Variational Inference
Particle Semi-Implicit Variational Inference
Jen Ning Lim
A. M. Johansen
51
4
0
30 Jun 2024
Accelerating Bayesian inference for stochastic epidemic models using
  incidence data
Accelerating Bayesian inference for stochastic epidemic models using incidence data
Andrew Golightly
L. Wadkin
Sam A. Whitaker
A. Baggaley
N. G. Parker
T. Kypraios
20
6
0
27 Mar 2023
Properties of Marginal Sequential Monte Carlo Methods
Properties of Marginal Sequential Monte Carlo Methods
F. R. Crucinio
A. M. Johansen
26
2
0
06 Mar 2023
Improving multiple-try Metropolis with local balancing
Improving multiple-try Metropolis with local balancing
Philippe Gagnon
Florian Maire
Giacomo Zanella
31
10
0
21 Nov 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
39
26
0
20 Dec 2021
The divide-and-conquer sequential Monte Carlo algorithm: theoretical
  properties and limit theorems
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
19
10
0
29 Oct 2021
Pseudo-marginal Inference for CTMCs on Infinite Spaces via Monotonic
  Likelihood Approximations
Pseudo-marginal Inference for CTMCs on Infinite Spaces via Monotonic Likelihood Approximations
Miguel Biron-Lattes
Alexandre Bouchard-Coté
Trevor Campbell
81
2
0
28 May 2021
Product-form estimators: exploiting independence to scale up Monte Carlo
Product-form estimators: exploiting independence to scale up Monte Carlo
Juan Kuntz
F. R. Crucinio
A. M. Johansen
31
10
0
23 Feb 2021
Generalized Posteriors in Approximate Bayesian Computation
Generalized Posteriors in Approximate Bayesian Computation
Sebastian M. Schmon
Patrick W Cannon
Jeremias Knoblauch
11
24
0
17 Nov 2020
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
29
62
0
02 Aug 2017
Pseudo-Marginal Hamiltonian Monte Carlo
Pseudo-Marginal Hamiltonian Monte Carlo
Johan Alenlöv
Arnaud Doucet
Fredrik Lindsten
36
22
0
08 Jul 2016
1